材料科学
阴极
纳米材料基催化剂
电催化剂
催化作用
氧化钇稳定氧化锆
化学工程
原子层沉积
氧化物
钴
多孔性
纳米技术
图层(电子)
纳米颗粒
复合材料
立方氧化锆
冶金
陶瓷
化学
电化学
电极
物理化学
工程类
生物化学
作者
Yun Chen,Liang Liang,Sergio A. Paredes-Navia,Alec Hinerman,Kirk Gerdes,Xueyan Song
出处
期刊:ACS Catalysis
[American Chemical Society]
日期:2019-06-18
卷期号:9 (8): 6664-6671
被引量:22
标识
DOI:10.1021/acscatal.9b00811
摘要
The sluggish oxygen reduction reaction (ORR) in the cathode is hindering the power density of solid oxide fuel cells (SOFCs). Infiltration of catalyst into the cathode of SOFCs is promising to accelerate the ORR. However, the degradation associated with the coarsening of the nanocatalyst is intense. To stabilize the catalyst, atomic layer deposition (ALD) is employed to coat a dual electrocatalyst consisting of a superjacent 2 nm CoOx layer and superjacent 3 nm discrete Pt particles into the porous lanthanum strontium manganite (LSM)/yttria-stabilized zirconia (YSZ) cathode. After 504 h of operation at 750 °C, the ALD coating resulted in the peak power density enhancement by ∼200%, while CoOx becomes Mn-enriched (MnCo)Ox nanograins coupling with nano-Pt. The Pt/(MnCo)Ox nanocouplings are uniformly distributed on the YSZ grain surface, triple-phase boundaries, and at LSM/LSM surface grain boundaries. This study demonstrates an effective approach of stabilizing the minute amount of catalyst for enhancing ORR activity at elevated temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI