A framework for predicting the remaining useful life of machinery working under time-varying operational conditions

计算机科学 工作时间 运筹学 可靠性工程 工程类 工作(物理) 数学 机械工程
作者
Zhiyao Zhang,Xiaohong Chen,Enrico Zio
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:126: 109164-109164 被引量:12
标识
DOI:10.1016/j.asoc.2022.109164
摘要

Remaining useful life (RUL) prediction can provide additional capabilities to condition-based maintenance (CBM) and predictive maintenance (PdM) for the reliability and service life of a system. Time-varying operational conditions, such as the altitude, Mach number, and throttle resolver angle of an aero-engine, could result in two main challenges for RUL predictions: varying degradation rates and abrupt jumps in the amplitude of sensor readings. Our study addresses these two challenges in the data pre-processing stage, through operational condition features and the multi-operational condition-based normalization method (MOC-based Normalization). In the framework of our model, first, two density-based clustering algorithms are integrated to be a new classifier for operational conditions clustering and identification in an unsupervised manner. Then, operational condition features consisting of operational condition labels and an operational condition factor are conducted. In the meantime, the proposed MOC-based Normalization recalibrates the upward or downward abrupt jumps of sensor readings at the operational conditions change-points. Sensor data features and operational condition features are combined in the last step of the data pre-processing stage. On this basis, the RUL representation model is trained with the combined features through a gated recurrent unit (GRU)-based network with only two layers in the hidden layer. Experiments on benchmark datasets have been conducted. The results show that the MOC-based Normalization efficiently mitigates the jumps on sensor readings, and the operational condition features improve the prognostic model. Approximately 10% RMSE improvements over the top-three state-of-the-art algorithms are achieved in the RUL prediction under time-varying operational conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪完成签到 ,获得积分10
刚刚
SisiZheng完成签到,获得积分20
1秒前
宋晓静发布了新的文献求助10
6秒前
RY完成签到,获得积分10
6秒前
6秒前
bc应助ccm采纳,获得30
7秒前
CC完成签到,获得积分10
8秒前
小新完成签到 ,获得积分10
8秒前
yuancw完成签到 ,获得积分10
9秒前
科研通AI5应助LL采纳,获得10
9秒前
10秒前
JIANYOUFU完成签到,获得积分10
10秒前
10秒前
浮云完成签到,获得积分10
12秒前
雪梅完成签到 ,获得积分10
13秒前
13秒前
grmqgq完成签到,获得积分10
13秒前
14秒前
no_one完成签到,获得积分10
15秒前
活力寄凡发布了新的文献求助30
17秒前
中岛悠斗完成签到,获得积分10
17秒前
yun尘世发布了新的文献求助10
18秒前
科研小白发布了新的文献求助10
18秒前
追寻紫安发布了新的文献求助10
19秒前
霍师傅发布了新的文献求助10
19秒前
21秒前
热心一一完成签到,获得积分10
22秒前
xzy998应助霍师傅采纳,获得10
24秒前
likex完成签到,获得积分10
25秒前
复杂念梦发布了新的文献求助10
25秒前
25秒前
热心一一发布了新的文献求助10
26秒前
317完成签到,获得积分10
26秒前
忧虑的访梦完成签到 ,获得积分10
26秒前
大个应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
27秒前
小蘑菇应助科研通管家采纳,获得10
27秒前
无花果应助科研通管家采纳,获得10
27秒前
慕青应助科研通管家采纳,获得30
27秒前
Jasper应助科研通管家采纳,获得10
27秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522