Radiologists with and without deep learning–based computer-aided diagnosis: comparison of performance and interobserver agreement for characterizing and diagnosing pulmonary nodules/masses

医学 恶性肿瘤 神经组阅片室 放射科 钙化 组内相关 介入放射学 核医学
作者
Tomohiro Wataya,Masahiro Yanagawa,Mitsuko Tsubamoto,Tomoharu Sato,Daiki Nishigaki,Kosuke Kita,Kazuki Yamagata,Yuki Suzuki,Akinori Hata,Shoji Kido,Noriyuki Tomiyama
出处
期刊:European Radiology [Springer Nature]
标识
DOI:10.1007/s00330-022-08948-4
摘要

To compare the performance of radiologists in characterizing and diagnosing pulmonary nodules/masses with and without deep learning (DL)-based computer-aided diagnosis (CAD).We studied a total of 101 nodules/masses detected on CT performed between January and March 2018 at Osaka University Hospital (malignancy: 55 cases). SYNAPSE SAI Viewer V1.4 was used to analyze the nodules/masses. In total, 15 independent radiologists were grouped (n = 5 each) according to their experience: L (< 3 years), M (3-5 years), and H (> 5 years). The likelihoods of 15 characteristics, such as cavitation and calcification, and the diagnosis (malignancy) were evaluated by each radiologist with and without CAD, and the assessment time was recorded. The AUCs compared with the reference standard set by two board-certified chest radiologists were analyzed following the multi-reader multi-case method. Furthermore, interobserver agreement was compared using intraclass correlation coefficients (ICCs).The AUCs for ill-defined boundary, irregular margin, irregular shape, calcification, pleural contact, and malignancy in all 15 radiologists, irregular margin and irregular shape in L and ill-defined boundary and irregular margin in M improved significantly (p < 0.05); no significant improvements were found in H. L showed the greatest increase in the AUC for malignancy (not significant). The ICCs improved in all groups and for nearly all items. The median assessment time was not prolonged by CAD.DL-based CAD helps radiologists, particularly those with < 5 years of experience, to accurately characterize and diagnose pulmonary nodules/masses, and improves the reproducibility of findings among radiologists.• Deep learning-based computer-aided diagnosis improves the accuracy of characterizing nodules/masses and diagnosing malignancy, particularly by radiologists with < 5 years of experience. • Computer-aided diagnosis increases not only the accuracy but also the reproducibility of the findings across radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zzz发布了新的文献求助10
1秒前
Akim应助年轻小之采纳,获得10
2秒前
攘攘发布了新的文献求助10
2秒前
YUE发布了新的文献求助50
3秒前
3秒前
3秒前
皓月繁星发布了新的文献求助30
4秒前
果果糖YLJ发布了新的文献求助10
4秒前
4秒前
jiayi完成签到,获得积分20
5秒前
5秒前
小余同学发布了新的文献求助10
5秒前
spark发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
7秒前
幽篁深韵发布了新的文献求助10
8秒前
summer发布了新的文献求助10
8秒前
9秒前
伊弦完成签到,获得积分10
9秒前
9秒前
科研通AI6应助研究牲采纳,获得10
10秒前
辞镜发布了新的文献求助10
11秒前
13秒前
lalala应助ss采纳,获得10
13秒前
李健应助dddjs采纳,获得10
13秒前
13秒前
14秒前
14秒前
15秒前
hj1234完成签到,获得积分10
16秒前
年轻小之发布了新的文献求助10
16秒前
酷波er应助科研小白采纳,获得10
17秒前
17秒前
Hello应助mm采纳,获得10
17秒前
果果糖YLJ完成签到,获得积分10
18秒前
重要衬衫发布了新的文献求助10
18秒前
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5287058
求助须知:如何正确求助?哪些是违规求助? 4439572
关于积分的说明 13822123
捐赠科研通 4321561
什么是DOI,文献DOI怎么找? 2372031
邀请新用户注册赠送积分活动 1367525
关于科研通互助平台的介绍 1331007