A dynamic-model-based fault diagnosis method for a wind turbine planetary gearbox using a deep learning network

断层(地质) 可靠性(半导体) 卷积神经网络 时域 学习迁移 涡轮机 人工神经网络 工程类 计算机科学 状态监测 人工智能 振动 控制工程 计算机视觉 物理 地质学 电气工程 机械工程 功率(物理) 地震学 量子力学
作者
Dongdong Li,Yang Zhao,Yao Zhao
出处
期刊:Protection and Control of Modern Power Systems [Springer Nature]
卷期号:7 (1) 被引量:9
标识
DOI:10.1186/s41601-022-00244-z
摘要

Abstract The planetary gearbox is a critical part of wind turbines, and has great significance for their safety and reliability. Intelligent fault diagnosis methods for these gearboxes have made some achievements based on the availability of large quantities of labeled data. However, the data collected from the diagnosed devices are always unlabeled, and the acquisition of fault data from real gearboxes is time-consuming and laborious. As some gearbox faults can be conveniently simulated by a relatively precise dynamic model, the data from dynamic simulation containing some features are related to those from the actual machines. As a potential tool, transfer learning adapts a network trained in a source domain to its application in a target domain. Therefore, a novel fault diagnosis method combining transfer learning with dynamic model is proposed to identify the health conditions of planetary gearboxes. In the method, a modified lumped-parameter dynamic model of a planetary gear train is established to simulate the resultant vibration signal, while an optimized deep transfer learning network based on a one-dimensional convolutional neural network is built to extract domain-invariant features from different domains to achieve fault classification. Various groups of transfer diagnosis experiments of planetary gearboxes are carried out, and the experimental results demonstrate the effectiveness and the reliability of both the dynamic model and the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助snsnf采纳,获得10
刚刚
Halsey驳回了慕青应助
刚刚
苍蓝所栖发布了新的文献求助10
1秒前
张宁波发布了新的文献求助30
2秒前
generaliu发布了新的文献求助200
2秒前
11完成签到,获得积分20
3秒前
4秒前
5秒前
千折完成签到 ,获得积分10
6秒前
7秒前
刘老哥6完成签到,获得积分10
7秒前
蔡小娜发布了新的文献求助10
8秒前
8秒前
超级七七发布了新的文献求助10
9秒前
无心的芸完成签到,获得积分20
9秒前
11秒前
科研通AI6应助甜美依云采纳,获得10
12秒前
kk君发布了新的文献求助10
13秒前
14秒前
Lucas应助无心的芸采纳,获得10
14秒前
打打应助自然听兰采纳,获得10
16秒前
16秒前
18秒前
林子鸿完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
郭gyc123456发布了新的文献求助30
20秒前
11发布了新的文献求助10
21秒前
21秒前
22秒前
kk发布了新的文献求助10
22秒前
littlechy发布了新的文献求助10
24秒前
CHAI完成签到,获得积分10
24秒前
乳酸菌完成签到 ,获得积分10
24秒前
ding应助蔡小娜采纳,获得10
24秒前
可爱的函函应助Solaris采纳,获得10
25秒前
ding应助Daisy采纳,获得100
25秒前
土豆地雷完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5484090
求助须知:如何正确求助?哪些是违规求助? 4584405
关于积分的说明 14397691
捐赠科研通 4514382
什么是DOI,文献DOI怎么找? 2473969
邀请新用户注册赠送积分活动 1459937
关于科研通互助平台的介绍 1433307