Artificial Intelligence-Assisted Score Analysis for Predicting the Expression of the Immunotherapy Biomarker PD-L1 in Lung Cancer

肺癌 医学 免疫疗法 生物标志物 PD-L1 腺癌 肿瘤科 免疫组织化学 内科学 癌症 病理 生物 生物化学
作者
Guoping Cheng,Fuchuang Zhang,Yishi Xing,Xingyi Hu,He Zhang,Shiting Chen,Mengdao Li,Chaolong Peng,Guangtai Ding,Dadong Zhang,Peilin Chen,Qingxin Xia,Meijuan Wu
出处
期刊:Frontiers in Immunology [Frontiers Media]
卷期号:13 被引量:47
标识
DOI:10.3389/fimmu.2022.893198
摘要

Programmed cell death ligand 1 (PD-L1) is a critical biomarker for predicting the response to immunotherapy. However, traditional quantitative evaluation of PD-L1 expression using immunohistochemistry staining remains challenging for pathologists. Here we developed a deep learning (DL)-based artificial intelligence (AI) model to automatically analyze the immunohistochemical expression of PD-L1 in lung cancer patients. A total of 1,288 patients with lung cancer were included in the study. The diagnostic ability of three different AI models (M1, M2, and M3) was assessed in both PD-L1 (22C3) and PD-L1 (SP263) assays. M2 and M3 showed improved performance in the evaluation of PD-L1 expression in the PD-L1 (22C3) assay, especially at 1% cutoff. Highly accurate performance in the PD-L1 (SP263) was also achieved, with accuracy and specificity of 96.4 and 96.8% in both M2 and M3, respectively. Moreover, the diagnostic results of these three AI-assisted models were highly consistent with those from the pathologist. Similar performances of M1, M2, and M3 in the 22C3 dataset were also obtained in lung adenocarcinoma and lung squamous cell carcinoma in both sampling methods. In conclusion, these results suggest that AI-assisted diagnostic models in PD-L1 expression are a promising tool for improving the efficiency of clinical pathologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
goku应助科研通管家采纳,获得10
2秒前
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
传奇3应助感觉采纳,获得10
3秒前
luna完成签到,获得积分10
4秒前
jiahao完成签到,获得积分10
5秒前
MFNM完成签到,获得积分10
7秒前
8秒前
9秒前
大个应助俊逸的人达采纳,获得10
10秒前
linhuom发布了新的文献求助10
11秒前
卡卡西西西完成签到,获得积分10
12秒前
cg完成签到,获得积分10
13秒前
向阳发布了新的文献求助10
17秒前
Jasper应助柴胡采纳,获得10
18秒前
22秒前
科研通AI6应助徐恭采纳,获得10
23秒前
25秒前
tojia发布了新的文献求助10
26秒前
班班的班班完成签到 ,获得积分10
26秒前
30秒前
你好完成签到 ,获得积分10
31秒前
linhuom发布了新的文献求助10
31秒前
31秒前
xuanheee发布了新的文献求助10
32秒前
感觉发布了新的文献求助10
34秒前
tojia完成签到,获得积分10
36秒前
36秒前
zhangjsh31完成签到,获得积分10
41秒前
kukude完成签到,获得积分10
44秒前
友好的匪完成签到,获得积分10
49秒前
独特大白菜真实的钥匙完成签到,获得积分10
49秒前
49秒前
SciGPT应助安抓泥采纳,获得10
50秒前
linhuom发布了新的文献求助10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
The Handbook of Communication Skills 500
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4791843
求助须知:如何正确求助?哪些是违规求助? 4114911
关于积分的说明 12729645
捐赠科研通 3842466
什么是DOI,文献DOI怎么找? 2118176
邀请新用户注册赠送积分活动 1140417
关于科研通互助平台的介绍 1028446