Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes

晶界 从头算 原子间势 热扩散率 材料科学 分子动力学 量子 相变 计算机科学 化学物理 化学 统计物理学 凝聚态物理 热力学 计算化学 物理 微观结构 量子力学 有机化学 冶金
作者
Kwangnam Kim,Aniruddha Dive,Andrew Grieder,Nicole Adelstein,ShinYoung Kang,Liwen F. Wan,Brandon C. Wood
出处
期刊:Journal of Chemical Physics [American Institute of Physics]
卷期号:156 (22) 被引量:18
标识
DOI:10.1063/5.0090341
摘要

Batteries based on solid-state electrolytes, including Li7La3Zr2O12 (LLZO), promise improved safety and increased energy density; however, atomic disorder at grain boundaries and phase boundaries can severely deteriorate their performance. Machine-learning (ML) interatomic potentials offer a uniquely compelling solution for simulating chemical processes, rare events, and phase transitions associated with these complex interfaces by mixing high scalability with quantum-level accuracy, provided that they can be trained to properly address atomic disorder. To this end, we report the construction and validation of an ML potential that is specifically designed to simulate crystalline, disordered, and amorphous LLZO systems across a wide range of conditions. The ML model is based on a neural network algorithm and is trained using ab initio data. Performance tests prove that the developed ML potential can predict accurate structural and vibrational characteristics, elastic properties, and Li diffusivity of LLZO comparable to ab initio simulations. As a demonstration of its applicability to larger systems, we show that the potential can correctly capture grain boundary effects on diffusivity, as well as the thermal transition behavior of LLZO. These examples show that the ML potential enables simulations of transitions between well-defined and disordered structures with quantum-level accuracy at speeds thousands of times faster than ab initio methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谨慎志泽发布了新的文献求助10
2秒前
哈哈哈发布了新的文献求助10
3秒前
5秒前
7秒前
隐形曼青应助谨慎志泽采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得50
8秒前
熊子文完成签到 ,获得积分10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
carol发布了新的文献求助10
10秒前
xzy998应助HYY采纳,获得10
11秒前
12秒前
12秒前
希望天下0贩的0应助Captain采纳,获得10
12秒前
13秒前
ZhouYW应助66668888采纳,获得10
14秒前
15秒前
张瑞宁完成签到,获得积分10
15秒前
16秒前
烟花应助陈JY采纳,获得10
16秒前
wfs完成签到,获得积分10
16秒前
Galato发布了新的文献求助10
16秒前
在水一方应助求求好心人采纳,获得30
16秒前
搜集达人应助恬昱采纳,获得30
16秒前
棉袄发布了新的文献求助10
17秒前
陈展峰发布了新的文献求助10
17秒前
llllt发布了新的文献求助10
18秒前
Galato完成签到,获得积分10
21秒前
爆米花应助Spine采纳,获得10
22秒前
斐嘿嘿发布了新的文献求助10
22秒前
重要元灵发布了新的文献求助10
22秒前
葛二蛋完成签到,获得积分10
22秒前
11111完成签到 ,获得积分10
23秒前
hh关闭了hh文献求助
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792128
求助须知:如何正确求助?哪些是违规求助? 3336396
关于积分的说明 10280645
捐赠科研通 3053053
什么是DOI,文献DOI怎么找? 1675455
邀请新用户注册赠送积分活动 803469
科研通“疑难数据库(出版商)”最低求助积分说明 761382