随机性
挫折感
反铁磁性
方格
基态
凝聚态物理
量子自旋液体
旋转玻璃
单重态
相图
海森堡模型
物理
格子(音乐)
自旋(空气动力学)
统计物理学
量子力学
伊辛模型
数学
相(物质)
热力学
统计
自旋极化
电子
声学
激发态
作者
Kazuki Uematsu,Hikaru Kawamura
出处
期刊:Physical review
[American Physical Society]
日期:2018-10-16
卷期号:98 (13)
被引量:45
标识
DOI:10.1103/physrevb.98.134427
摘要
We investigate the ground-state and the finite-temperature properties of the bond-random $s=1/2$ Heisenberg model on a square lattice with frustrating nearest- and next-nearest-neighbor antiferromagnetic interactions, ${J}_{1}$ and ${J}_{2}$, by the exact diagonalization and the Hams--de Raedt methods. The ground-state phase diagram of the model is constructed in the randomness versus the frustration (${J}_{2}/{J}_{1}$) plane, with the aim of clarifying the effects of randomness and frustration in stabilizing a variety of phases. We find that the randomness induces the gapless quantum spin liquid (QSL)-like state, the random-singlet state, together with the spin-glass state in a certain range of parameter space. The spin-glass state might be stabilized by employing the lattice directional degrees of freedom associated with the stripe-type magnetic order of the regular model. Possible implications to recent experiments on the square-lattice mixed-crystal antiferromagnet ${\mathrm{Sr}}_{2}\mathrm{Cu}({\mathrm{Te}}_{1\ensuremath{-}x}{\mathrm{W}}_{x}){\mathrm{O}}_{6}$ exhibiting the gapless QSL-like behaviors are discussed.
科研通智能强力驱动
Strongly Powered by AbleSci AI