Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:161: 104733-104733 被引量:52
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谈笑间发布了新的文献求助10
刚刚
3秒前
3秒前
英姑应助小魏采纳,获得10
5秒前
5秒前
自觉紫安完成签到 ,获得积分20
6秒前
小二郎应助202采纳,获得10
6秒前
7秒前
Oak完成签到 ,获得积分10
8秒前
shlll发布了新的文献求助10
8秒前
9秒前
shuxi完成签到,获得积分10
10秒前
乐观乐枫完成签到 ,获得积分10
10秒前
野草发布了新的文献求助10
14秒前
不买版权你出什么成果完成签到 ,获得积分10
15秒前
乐乐应助rain采纳,获得10
16秒前
17秒前
NexusExplorer应助shlll采纳,获得10
19秒前
20秒前
20秒前
CC完成签到,获得积分10
20秒前
谈笑间发布了新的文献求助10
21秒前
Lucas应助小魏采纳,获得10
22秒前
开心浩阑应助科研通管家采纳,获得20
24秒前
yydragen应助科研通管家采纳,获得30
24秒前
24秒前
开心浩阑应助科研通管家采纳,获得20
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
星辰大海应助科研通管家采纳,获得10
24秒前
24秒前
yydragen应助科研通管家采纳,获得30
24秒前
24秒前
24秒前
饱饱完成签到,获得积分10
24秒前
26秒前
27秒前
完美世界应助Qs2024PG采纳,获得10
29秒前
充电宝应助Qs2024PG采纳,获得10
29秒前
桐桐应助Qs2024PG采纳,获得10
29秒前
Popeye完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4032289
求助须知:如何正确求助?哪些是违规求助? 3570891
关于积分的说明 11362721
捐赠科研通 3301320
什么是DOI,文献DOI怎么找? 1817357
邀请新用户注册赠送积分活动 891529
科研通“疑难数据库(出版商)”最低求助积分说明 814266