Machine learning predicts cancer-associated deep vein thrombosis using clinically available variables

医学 癌症 人工智能 深度学习 深静脉 放射科 内科学 外科 血栓形成 计算机科学
作者
Shuai Jin,Dan Qin,Baosheng Liang,Lichuan Zhang,Xiaoxia Wei,Yujie Wang,Bing Zhuang,Tong Zhang,Zhenpeng Yang,Yiwei Cao,Sanli Jin,Ping Yang,Bo Jiang,Benqiang Rao,Hanping Shi,Qian Lü
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:161: 104733-104733 被引量:54
标识
DOI:10.1016/j.ijmedinf.2022.104733
摘要

To develop and validate machine learning (ML) models for cancer-associated deep vein thrombosis (DVT) and to compare the performance of these models with the Khorana score (KS).We randomly extracted data of 2100 patients with cancer between Jan. 1, 2017, and Oct. 31, 2019, and 1035 patients who underwent Doppler ultrasonography were enrolled. Univariate analysis and Lasso regression were applied to select important predictors. Model training and hyperparameter tuning were implemented on 70% of the data using a ten-fold cross-validation method. The remaining 30% of the data were used to compare the performance with seven indicators (area under the receiver operating characteristic curve [AUC], sensitivity, specificity, accuracy, balanced accuracy, Brier score, and calibration curve), among all five ML models (linear discriminant analysis [LDA], logistic regression [LR], classification tree [CT], random forest [RF], and support vector machine [SVM]), and the KS.The incidence of cancer-associated DVT was 22.3%. The top five predictors were D-dimer level, age, Charlson Comorbidity Index (CCI), length of stay (LOS), and previous VTE (venous thromboembolism) history according to RF. Only LDA (AUC = 0.773) and LR (AUC = 0.772) outperformed KS (AUC = 0.642), and combination with D-dimer showed improved performance in all models. A nomogram and web calculator https://webcalculatorofcancerassociateddvt.shinyapps.io/dynnomapp/ were used to visualize the best recommended LR model.This study developed and validated cancer-associated DVT predictive models using five ML algorithms and visualized the best recommended model using a nomogram and web calculator. The nomogram and web calculator developed in this study may assist doctors and nurses in evaluating individualized cancer-associated DVT risk and making decisions. However, other prospective cohort studies should be conducted to externally validate the recommended model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Glorious完成签到,获得积分10
1秒前
祝愿完成签到,获得积分10
2秒前
怕黑的跳跳糖完成签到,获得积分10
2秒前
2秒前
JamesPei应助Denmark采纳,获得50
3秒前
3秒前
熊猫小肿完成签到,获得积分10
4秒前
5秒前
JamesPei应助甜美的朝雪采纳,获得10
6秒前
情怀应助慢慢来帖子采纳,获得10
6秒前
LYNN发布了新的文献求助10
10秒前
所所应助甜甜圈采纳,获得10
10秒前
科研通AI5应助暴躁的c采纳,获得10
12秒前
碧蓝安露完成签到,获得积分10
12秒前
LucyMartinez发布了新的文献求助10
12秒前
无花果应助bu采纳,获得20
12秒前
科研菜狗完成签到,获得积分10
13秒前
大气的懒羊羊完成签到,获得积分10
15秒前
sunflower完成签到,获得积分10
17秒前
阿曼尼完成签到 ,获得积分10
17秒前
完美世界应助Brocade采纳,获得10
17秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
21秒前
懵懂的映菱完成签到,获得积分10
22秒前
甜甜圈发布了新的文献求助10
24秒前
25秒前
壮壮哥关注了科研通微信公众号
26秒前
细心蚂蚁发布了新的文献求助10
27秒前
28秒前
28秒前
profit完成签到 ,获得积分10
30秒前
mm完成签到 ,获得积分10
30秒前
Xhnz完成签到,获得积分20
30秒前
31秒前
量子星尘发布了新的文献求助10
32秒前
缓慢冷风发布了新的文献求助10
33秒前
33秒前
华仔应助细心蚂蚁采纳,获得10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883441
求助须知:如何正确求助?哪些是违规求助? 4168954
关于积分的说明 12935592
捐赠科研通 3929273
什么是DOI,文献DOI怎么找? 2156010
邀请新用户注册赠送积分活动 1174404
关于科研通互助平台的介绍 1079144