Optical Imaging of the Molecular Mobility of Single Polystyrene Nanospheres

聚苯乙烯 玻璃化转变 聚合物 纳米颗粒 化学 基质(水族馆) 天然橡胶 图层(电子) 表征(材料科学) 化学工程 纳米技术 纳米材料 化学物理 材料科学 有机化学 工程类 地质学 海洋学
作者
Shasha Liu,Mengqi Lv,Haoran Li,Sa Wang,Chengdong Feng,Xiaoliang Wang,Wenbing Hu,Wei Wang
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:144 (3): 1267-1273 被引量:11
标识
DOI:10.1021/jacs.1c10575
摘要

An ultrathin surface layer with extraordinary molecular mobility has been discovered and intensively investigated on thin-film polymer materials for decades. However, because of the lack of suitable characterization techniques, it remains largely unexplored whether such a surface mobile layer also exists on individual polymeric nanospheres. Here, we propose a thermal-optical imaging technique to determine the glass transition (Tg) and rubber-fluid transition (Tf) temperatures of single isolated polystyrene nanospheres (PSNS) in a high-throughput and nonintrusive manner for the first time. Two distinct steps, corresponding to the glass transition and rubber-fluid transition, respectively, were clearly observed in the optical trace of single PSNS during temperature ramping. Because the transition temperature and size of the same individuals were both determined, single nanoparticle measurements revealed the reduced apparent Tf and increased Tg of single PSNS on the gold substrate with a decreasing radius from 130 to 70 nm. Further experiments revealed that the substrate effect played an important role in the increased Tg. More importantly, a gradual decrease in the optical signal was detected prior to the glass transition, which was consistent with a surface layer with enhanced molecular mobility. Quantitative analysis further revealed the thickness of this layer to be ∼8 nm. This work not only uncovered the existence and thickness of a surface mobile layer in single isolated nanospheres but also demonstrated a general bottom-up strategy to investigate the structure–property relationship of polymeric nanomaterials by correlating the thermal property (Tg and Tf) and structural features (size) at single nanoparticle level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一线发布了新的文献求助10
刚刚
刚刚
余额完成签到,获得积分10
刚刚
乐1发布了新的文献求助10
1秒前
1秒前
善良的茗茗完成签到,获得积分10
3秒前
小葛完成签到,获得积分10
4秒前
清新的研完成签到,获得积分10
5秒前
JamesPei应助火之高兴采纳,获得30
5秒前
owen发布了新的文献求助10
5秒前
5秒前
Hello应助贺兰觿采纳,获得30
6秒前
PPD发布了新的文献求助10
7秒前
刘佳完成签到 ,获得积分10
7秒前
别凡完成签到,获得积分10
7秒前
慢慢完成签到,获得积分10
7秒前
充电宝应助姜饼心静采纳,获得10
8秒前
wxwang发布了新的文献求助50
8秒前
8秒前
9秒前
浅蓝完成签到 ,获得积分10
9秒前
英姑应助C阿好采纳,获得10
11秒前
12秒前
13秒前
13秒前
打工小房应助LeonZhang采纳,获得10
14秒前
14秒前
15秒前
15秒前
15秒前
玉碧完成签到,获得积分10
16秒前
16秒前
巨人的背影完成签到,获得积分10
17秒前
我是老大应助desen采纳,获得10
17秒前
打打应助温凊采纳,获得10
18秒前
lz完成签到,获得积分20
18秒前
葉芊羽发布了新的文献求助10
18秒前
whoKnows应助言小言采纳,获得10
18秒前
YHW应助言小言采纳,获得20
18秒前
jxzou发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Understanding Xi Jinping's educational philosophy 500
The Bloomsbury companion to the philosophy of sport 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4713651
求助须知:如何正确求助?哪些是违规求助? 4076912
关于积分的说明 12608510
捐赠科研通 3779779
什么是DOI,文献DOI怎么找? 2087816
邀请新用户注册赠送积分活动 1114200
科研通“疑难数据库(出版商)”最低求助积分说明 991643