Emotion recognition using effective connectivity and pre-trained convolutional neural networks in EEG signals

计算机科学 卷积神经网络 脑电图 模式识别(心理学) 人工智能 预处理器 信号(编程语言) 脑-机接口 语音识别 心理学 精神科 程序设计语言
作者
Sara Bagherzadeh,Keivan Maghooli,Ahmad Shalbaf,Arash Maghsoudi
出处
期刊:Cognitive Neurodynamics [Springer Science+Business Media]
卷期号:16 (5): 1087-1106 被引量:26
标识
DOI:10.1007/s11571-021-09756-0
摘要

Convolutional Neural Networks (CNN) have recently made considerable advances in the field of biomedical signal processing. These methodologies can assist in emotion recognition for affective brain computer interface. In this paper, a novel emotion recognition system based on the effective connectivity and the fine-tuned CNNs from multichannel Electroencephalogram (EEG) signal is presented. After preprocessing EEG signals, the relationships among 32 channels of EEG in the form of effective brain connectivity analysis which represents information flow between regions are computed by direct Directed Transfer Function (dDTF) method which yields a 32*32 image. Then, these constructed images from EEG signals for each subject were fed as input to four versions of pre-trained CNN models, AlexNet, ResNet-50, Inception-v3 and VGG-19 and the parameters of these models are fine-tuned, independently. The proposed deep learning architectures automatically learn patterns in the constructed image of the EEG signals in frequency bands. The efficiency of the proposed approach is evaluated on MAHNOB-HCI and DEAP databases. The experiments for classifying five emotional states show that the ResNet-50 applied on dDTF images in alpha band achieves best results due to specific architecture which captures the brain connectivity, efficiently. The accuracy and F1-score values for MAHNOB-HCI were obtained 99.41, 99.42 and for DEAP databases, 98.17, and 98.23. Newly proposed model is capable of effectively analyzing the brain function using information flow from multichannel EEG signals using effective connectivity measure of dDTF and ResNet-50.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩的网络完成签到 ,获得积分20
刚刚
刚刚
从容的谷云发布了新的文献求助200
刚刚
健忘捕发布了新的文献求助10
1秒前
内向绿竹应助zhiwei采纳,获得30
1秒前
1秒前
2秒前
烟花应助探讨采纳,获得10
2秒前
小熊66618发布了新的文献求助10
4秒前
5秒前
背后中心完成签到,获得积分10
5秒前
5秒前
6秒前
登山人发布了新的文献求助10
7秒前
两是ssyycc发布了新的文献求助10
9秒前
afrex发布了新的文献求助30
11秒前
天天开心完成签到 ,获得积分10
11秒前
彭于晏应助轩子墨采纳,获得10
12秒前
gloval完成签到,获得积分10
13秒前
科研通AI5应助小旺仔采纳,获得10
14秒前
耗子侠完成签到,获得积分10
16秒前
倒立才能看文献完成签到,获得积分10
16秒前
17秒前
17秒前
你好这位仁兄完成签到,获得积分10
19秒前
Tiwiiw完成签到 ,获得积分10
20秒前
20秒前
23秒前
23秒前
登山人发布了新的文献求助10
24秒前
26秒前
27秒前
一叶扁舟完成签到,获得积分10
27秒前
尘扬发布了新的文献求助10
28秒前
探讨发布了新的文献求助10
28秒前
30秒前
科研通AI5应助地表飞猪采纳,获得10
31秒前
32秒前
33秒前
gudu完成签到,获得积分10
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742