EPSPatNet86: eight-pointed star pattern learning network for detection ADHD disorder using EEG signals

模式识别(心理学) 人工智能 脑电图 小波 特征提取 计算机科学 分类器(UML) 支持向量机 特征向量 语音识别 心理学 精神科
作者
Dahiru Tanko,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Elizabeth E. Palmer,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (3): 035002-035002 被引量:15
标识
DOI:10.1088/1361-6579/ac59dc
摘要

Objective.The main objective of this work is to present a hand-modelled one-dimensional signal classification system to detect Attention-Deficit Hyperactivity Disorder (ADHD) disorder using electroencephalography (EEG) signals.Approach.A novel handcrafted feature extraction method is presented in this research. Our proposed method uses a directed graph and an eight-pointed star pattern (EPSPat). Also, tunable q wavelet transforms (TQWT), wavelet packet decomposition (WPD), statistical extractor, iterative Chi2 (IChi2) selector, and the k-nearest neighbors (kNN) classifier have been utilized to develop the EPSPat based learning model. This network uses two wavelet decomposition methods (TQWT and WPD), and 85 wavelet coefficient bands are extracted. The proposed EPSPat and statistical feature creator generate features from the 85 wavelet coefficient bands and the original EEG signal. The learning network is termed EPSPatNet86. The main purpose of the presented EPSPatNet86 is to detect abnormalities of the EEG signals. Therefore, 85 wavelet subbands have been generated to extract features. The created 86 feature vectors have been evaluated using the Chi2 selector and the kNN classifier in the loss value calculation phase. The final features vector is created by employing a minimum loss-valued eight feature vectors. The IChi2 selector selects the best feature vector, which is fed to the kNN classifier. An EEG signal dataset has been used to demonstrate the presented model's EEG signal classification ability. We have used an ADHD EEG dataset since ADHD is a commonly seen brain-related ailment.Main results.Our developed EPSPatNet86 model can detect the ADHD EEG signals with 97.19% and 87.60% accuracy using 10-fold cross and subject-wise validations, respectively.Significance.The calculated results demonstrate that the presented EPSPatNet86 attained satisfactory EEG classification ability. Results show that we can apply our developed EPSPatNet86 model to other EEG signal datasets to detect abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老实的黑米完成签到 ,获得积分10
1秒前
xinxin完成签到,获得积分10
4秒前
华仔应助木拉采纳,获得10
8秒前
aaaaa完成签到,获得积分10
8秒前
kaier完成签到 ,获得积分0
9秒前
向日葵完成签到,获得积分10
10秒前
优雅的化蛹完成签到,获得积分10
10秒前
拉稀摆带完成签到 ,获得积分10
11秒前
朝花夕拾完成签到,获得积分10
11秒前
hahaha完成签到,获得积分10
14秒前
美丽的芙完成签到 ,获得积分10
15秒前
饼干肥熊完成签到 ,获得积分10
15秒前
研友_85YNe8发布了新的文献求助10
15秒前
稳重的秋天完成签到,获得积分10
16秒前
Eric完成签到,获得积分10
16秒前
研友_8K2QJZ完成签到,获得积分10
18秒前
陶醉的钢笔完成签到 ,获得积分0
19秒前
Mr.Ren完成签到,获得积分10
19秒前
20秒前
21秒前
程艳完成签到 ,获得积分10
21秒前
22秒前
24秒前
咕咕发布了新的文献求助10
25秒前
大个应助aaaaa采纳,获得10
26秒前
萧瑟秋风今又是完成签到 ,获得积分10
26秒前
27秒前
28秒前
侯曼雁发布了新的文献求助10
29秒前
恋爱三角理论完成签到,获得积分10
30秒前
双碳小王子完成签到,获得积分10
30秒前
Roy完成签到,获得积分10
31秒前
32秒前
zml发布了新的文献求助10
34秒前
dl完成签到,获得积分10
34秒前
皮皮完成签到 ,获得积分10
35秒前
XuNan完成签到,获得积分10
36秒前
37秒前
ayang001完成签到,获得积分10
38秒前
炙热的雨双完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5294026
求助须知:如何正确求助?哪些是违规求助? 4444005
关于积分的说明 13831938
捐赠科研通 4327985
什么是DOI,文献DOI怎么找? 2375883
邀请新用户注册赠送积分活动 1371153
关于科研通互助平台的介绍 1336208