清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

EPSPatNet86: eight-pointed star pattern learning network for detection ADHD disorder using EEG signals

模式识别(心理学) 人工智能 脑电图 小波 特征提取 计算机科学 分类器(UML) 支持向量机 特征向量 语音识别 心理学 精神科
作者
Dahiru Tanko,Prabal Datta Barua,Şengül Doğan,Türker Tuncer,Elizabeth E. Palmer,Edward J. Ciaccio,U. Rajendra Acharya
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:43 (3): 035002-035002 被引量:15
标识
DOI:10.1088/1361-6579/ac59dc
摘要

Objective.The main objective of this work is to present a hand-modelled one-dimensional signal classification system to detect Attention-Deficit Hyperactivity Disorder (ADHD) disorder using electroencephalography (EEG) signals.Approach.A novel handcrafted feature extraction method is presented in this research. Our proposed method uses a directed graph and an eight-pointed star pattern (EPSPat). Also, tunable q wavelet transforms (TQWT), wavelet packet decomposition (WPD), statistical extractor, iterative Chi2 (IChi2) selector, and the k-nearest neighbors (kNN) classifier have been utilized to develop the EPSPat based learning model. This network uses two wavelet decomposition methods (TQWT and WPD), and 85 wavelet coefficient bands are extracted. The proposed EPSPat and statistical feature creator generate features from the 85 wavelet coefficient bands and the original EEG signal. The learning network is termed EPSPatNet86. The main purpose of the presented EPSPatNet86 is to detect abnormalities of the EEG signals. Therefore, 85 wavelet subbands have been generated to extract features. The created 86 feature vectors have been evaluated using the Chi2 selector and the kNN classifier in the loss value calculation phase. The final features vector is created by employing a minimum loss-valued eight feature vectors. The IChi2 selector selects the best feature vector, which is fed to the kNN classifier. An EEG signal dataset has been used to demonstrate the presented model's EEG signal classification ability. We have used an ADHD EEG dataset since ADHD is a commonly seen brain-related ailment.Main results.Our developed EPSPatNet86 model can detect the ADHD EEG signals with 97.19% and 87.60% accuracy using 10-fold cross and subject-wise validations, respectively.Significance.The calculated results demonstrate that the presented EPSPatNet86 attained satisfactory EEG classification ability. Results show that we can apply our developed EPSPatNet86 model to other EEG signal datasets to detect abnormalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SCI的芷蝶完成签到 ,获得积分10
2秒前
瓦力完成签到 ,获得积分10
20秒前
姜生在树上完成签到 ,获得积分10
35秒前
45秒前
51秒前
WYK完成签到 ,获得积分10
1分钟前
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
wentao发布了新的文献求助10
2分钟前
2分钟前
2分钟前
李燊发布了新的文献求助10
3分钟前
现实的俊驰完成签到 ,获得积分10
3分钟前
Benhnhk21完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
yuhang完成签到 ,获得积分10
4分钟前
5分钟前
斯文的傲珊完成签到,获得积分10
5分钟前
研友_nE1dDn发布了新的文献求助20
5分钟前
SciGPT应助研友_nE1dDn采纳,获得10
6分钟前
习月阳完成签到,获得积分10
6分钟前
zilhua完成签到,获得积分10
6分钟前
6分钟前
李燊发布了新的文献求助10
6分钟前
沿途有你完成签到 ,获得积分10
6分钟前
烟花应助李燊采纳,获得10
6分钟前
6分钟前
Grace0621发布了新的文献求助10
6分钟前
科研通AI5应助universe_hhy采纳,获得50
7分钟前
sowhat完成签到 ,获得积分10
7分钟前
David完成签到,获得积分10
8分钟前
星辰完成签到 ,获得积分10
8分钟前
下午好完成签到 ,获得积分10
9分钟前
liuliu完成签到,获得积分10
9分钟前
9分钟前
淡定的健柏完成签到 ,获得积分10
10分钟前
几米完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830495
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702193
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101