Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology

组织学 免疫系统 肝细胞癌 医学 病理 生物 免疫学 内科学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Narmin Ghaffari Laleh,Danièle Sommacale,Alexis Laurent,Giuliana Amaddeo,David Gentien,Audrey Rapinat,Hélène Regnault,Cécile Charpy,Công Trung Nguyễn,Christophe Tournigand,Raffaele Brustia,Jean‐Michel Pawlotsky,Jakob Nikolas Kather,Maria Chiara Maiuri,Nicolas Loménie,Julien Caldéraro
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:77 (1): 116-127 被引量:67
标识
DOI:10.1016/j.jhep.2022.01.018
摘要

Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures.AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures.The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils.We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice.Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助烤肉酱酱酱采纳,获得10
5秒前
8秒前
zho发布了新的文献求助10
15秒前
潇洒的平松完成签到,获得积分10
16秒前
17秒前
bkagyin应助外向宛菡采纳,获得10
19秒前
哭泣以筠完成签到 ,获得积分10
19秒前
22秒前
23秒前
23秒前
欣喜水桃完成签到,获得积分10
24秒前
RichieXU完成签到,获得积分10
25秒前
满意一曲发布了新的文献求助10
25秒前
dennisysz发布了新的文献求助10
26秒前
26秒前
ding应助CH采纳,获得10
28秒前
29秒前
不倦给殷勤的紫槐的求助进行了留言
30秒前
优美君浩发布了新的文献求助10
31秒前
JL发布了新的文献求助10
32秒前
隐形的谷槐完成签到 ,获得积分10
33秒前
namaka完成签到,获得积分10
33秒前
xiaoxia发布了新的文献求助10
35秒前
一叶扁舟完成签到,获得积分10
35秒前
40秒前
CH发布了新的文献求助10
43秒前
小马甲应助啦啦啦采纳,获得10
48秒前
50秒前
53秒前
53秒前
xiaoxia完成签到,获得积分10
54秒前
mmyhn发布了新的文献求助200
54秒前
58秒前
ljj发布了新的文献求助10
58秒前
洪东智发布了新的文献求助10
1分钟前
dennisysz发布了新的文献求助10
1分钟前
洪东智完成签到,获得积分10
1分钟前
丘比特应助CH采纳,获得10
1分钟前
爆米花应助pattzz采纳,获得10
1分钟前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103