Artificial intelligence predicts immune and inflammatory gene signatures directly from hepatocellular carcinoma histology

组织学 免疫系统 肝细胞癌 医学 病理 生物 免疫学 内科学
作者
Qinghe Zeng,Christophe Klein,Stefano Caruso,Pascale Maillé,Narmin Ghaffari Laleh,Danièle Sommacale,Alexis Laurent,Giuliana Amaddeo,David Gentien,Audrey Rapinat,Hélène Regnault,Cécile Charpy,Công Trung Nguyễn,Christophe Tournigand,Raffaele Brustia,Jean‐Michel Pawlotsky,Jakob Nikolas Kather,Maria Chiara Maiuri,Nicolas Loménie,Julien Caldéraro
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:77 (1): 116-127 被引量:82
标识
DOI:10.1016/j.jhep.2022.01.018
摘要

Patients with hepatocellular carcinoma (HCC) displaying overexpression of immune gene signatures are likely to be more sensitive to immunotherapy, however, the use of such signatures in clinical settings remains challenging. We thus aimed, using artificial intelligence (AI) on whole-slide digital histological images, to develop models able to predict the activation of 6 immune gene signatures.AI models were trained and validated in 2 different series of patients with HCC treated by surgical resection. Gene expression was investigated using RNA sequencing or NanoString technology. Three deep learning approaches were investigated: patch-based, classic MIL and CLAM. Pathological reviewing of the most predictive tissue areas was performed for all gene signatures.The CLAM model showed the best overall performance in the discovery series. Its best-fold areas under the receiver operating characteristic curves (AUCs) for the prediction of tumors with upregulation of the immune gene signatures ranged from 0.78 to 0.91. The different models generalized well in the validation dataset with AUCs ranging from 0.81 to 0.92. Pathological analysis of highly predictive tissue areas showed enrichment in lymphocytes, plasma cells, and neutrophils.We have developed and validated AI-based pathology models able to predict the activation of several immune and inflammatory gene signatures. Our approach also provides insights into the morphological features that impact the model predictions. This proof-of-concept study shows that AI-based pathology could represent a novel type of biomarker that will ease the translation of our biological knowledge of HCC into clinical practice.Immune and inflammatory gene signatures may be associated with increased sensitivity to immunotherapy in patients with advanced hepatocellular carcinoma. In the present study, the use of artificial intelligence-based pathology enabled us to predict the activation of these signatures directly from histology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助QQ采纳,获得10
刚刚
yigeluobo完成签到 ,获得积分10
刚刚
Shiku完成签到,获得积分10
1秒前
端庄之云完成签到,获得积分20
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
白元正完成签到,获得积分10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
pluto应助科研通管家采纳,获得50
3秒前
Carly发布了新的文献求助10
3秒前
科研通AI5应助科研通管家采纳,获得80
3秒前
HX应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
摩尔曼斯克港完成签到,获得积分10
3秒前
3秒前
bkagyin应助曲夜白采纳,获得10
3秒前
BLUZ完成签到,获得积分10
4秒前
李健应助年鱼精采纳,获得10
4秒前
4秒前
zhongying完成签到 ,获得积分10
4秒前
CipherSage应助细腻的深白采纳,获得10
5秒前
科研通AI6应助EK采纳,获得10
5秒前
TT完成签到,获得积分10
5秒前
5秒前
6秒前
繁荣的从雪完成签到,获得积分10
6秒前
BeiBei发布了新的文献求助10
6秒前
6秒前
浮华驳回了李李应助
7秒前
7秒前
慕青应助wqa1472采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280