Computationally Efficient Approximations for Distributionally Robust Optimization Under Moment and Wasserstein Ambiguity

数学优化 稳健优化 数学 力矩(物理) 模棱两可 报童模式 随机规划 概率分布 维数之咒 最优化问题 维数(图论) 计算机科学 经典力学 统计 供应链 物理 程序设计语言 法学 纯数学 政治学
作者
Meysam Cheramin,Jianqiang Cheng,Ruiwei Jiang,Kai Pan
出处
期刊:Informs Journal on Computing 卷期号:34 (3): 1768-1794 被引量:13
标识
DOI:10.1287/ijoc.2021.1123
摘要

Distributionally robust optimization (DRO) is a modeling framework in decision making under uncertainty in which the probability distribution of a random parameter is unknown although its partial information (e.g., statistical properties) is available. In this framework, the unknown probability distribution is assumed to lie in an ambiguity set consisting of all distributions that are compatible with the available partial information. Although DRO bridges the gap between stochastic programming and robust optimization, one of its limitations is that its models for large-scale problems can be significantly difficult to solve, especially when the uncertainty is of high dimension. In this paper, we propose computationally efficient inner and outer approximations for DRO problems under a piecewise linear objective function and with a moment-based ambiguity set and a combined ambiguity set including Wasserstein distance and moment information. In these approximations, we split a random vector into smaller pieces, leading to smaller matrix constraints. In addition, we use principal component analysis to shrink uncertainty space dimensionality. We quantify the quality of the developed approximations by deriving theoretical bounds on their optimality gap. We display the practical applicability of the proposed approximations in a production–transportation problem and a multiproduct newsvendor problem. The results demonstrate that these approximations dramatically reduce the computational time while maintaining high solution quality. The approximations also help construct an interval that is tight for most cases and includes the (unknown) optimal value for a large-scale DRO problem, which usually cannot be solved to optimality (or even feasibility in most cases). Summary of Contribution: This paper studies an important type of optimization problem, that is, distributionally robust optimization problems, by developing computationally efficient inner and outer approximations via operations research tools. Specifically, we consider several variants of such problems that are practically important and that admit tractable yet large-scale reformulation. We accordingly utilize random vector partition and principal component analysis to derive efficient approximations with smaller sizes, which, more importantly, provide a theoretical performance guarantee with respect to low optimality gaps. We verify the significant efficiency (i.e., reducing computational time while maintaining high solution quality) of our proposed approximations in solving both production–transportation and multiproduct newsvendor problems via extensive computing experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斐嘿嘿发布了新的文献求助30
刚刚
coolkid应助不太热烈采纳,获得10
3秒前
xiaohongmao完成签到,获得积分10
4秒前
4秒前
lyon发布了新的文献求助10
5秒前
6秒前
7秒前
xyawl425完成签到,获得积分10
8秒前
彭于晏应助激动的钢铁侠采纳,获得30
8秒前
飘逸菀关注了科研通微信公众号
9秒前
lyon完成签到,获得积分10
9秒前
SciGPT应助zzz采纳,获得10
12秒前
12秒前
机智的誉发布了新的文献求助10
13秒前
13秒前
滴滴发布了新的文献求助30
17秒前
激动的钢铁侠完成签到,获得积分20
18秒前
易辙完成签到,获得积分10
18秒前
曼林南烟完成签到,获得积分10
19秒前
甜甜十三完成签到,获得积分10
20秒前
机智的誉完成签到,获得积分10
20秒前
浪子完成签到,获得积分20
22秒前
科研通AI5应助lucyu2668采纳,获得10
22秒前
yaojiayoua完成签到 ,获得积分20
23秒前
大豆终结者完成签到,获得积分10
24秒前
polysaccharide完成签到,获得积分10
34秒前
Arthur完成签到 ,获得积分10
35秒前
英俊的铭应助laika采纳,获得10
36秒前
37秒前
儒雅醉冬完成签到,获得积分10
38秒前
小洪俊熙完成签到,获得积分10
39秒前
大模型应助Xyx采纳,获得10
39秒前
Hululu完成签到 ,获得积分10
39秒前
40秒前
完美世界应助欣慰的白羊采纳,获得10
41秒前
41秒前
lucyu2668发布了新的文献求助10
42秒前
42秒前
ZG发布了新的文献求助10
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846026
求助须知:如何正确求助?哪些是违规求助? 3388389
关于积分的说明 10553009
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713255
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774982