Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures

可再生能源 灵活性(工程) 网格 豆马勃属 能源管理 分布式发电 需求响应 计算机科学 储能 背景(考古学) 控制器(灌溉) 环境经济学 智能电网 工程类 能量(信号处理) 古生物学 农学 功率(物理) 统计 物理 几何学 数学 量子力学 电气工程 经济 生物
作者
Giuseppe Pinto,Anjukan Kathirgamanathan,Eleni Mangina,Donal Finn,Alfonso Capozzoli
出处
期刊:Applied Energy [Elsevier BV]
卷期号:310: 118497-118497 被引量:17
标识
DOI:10.1016/j.apenergy.2021.118497
摘要

The increasing penetration of renewable energy sources has the potential to contribute towards the decarbonisation of the building energy sector. However, this transition brings its own challenges including that of energy integration and potential grid instability issues arising due the stochastic nature of variable renewable energy sources. One potential approach to address these issues is demand side management, which is increasingly seen as a promising solution to improve grid stability. This is achieved by exploiting demand flexibility and shifting peak demand towards periods of peak renewable energy generation. However, the energy flexibility of a single building needs to be coordinated with other buildings to be used in a flexibility market. In this context, multi-agent systems represent a promising tool for improving the energy management of buildings at the district and grid scale. The present research formulates the energy management of four buildings equipped with thermal energy storage and PV systems as a multi-agent problem. Two multi-agent reinforcement learning methods are explored: a centralised (coordinated) controller and a decentralised (cooperative) controller, which are benchmarked against a rule-based controller. The two controllers were tested for three different climates, outperforming the rule-based controller by 3% and 7% respectively for cost, and 10% and 14% respectively for peak demand. The study shows that the multi-agent cooperative approach may be more suitable for districts with heterogeneous objectives within the individual buildings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xingyi完成签到,获得积分10
1秒前
CH完成签到,获得积分10
3秒前
jkaaa完成签到,获得积分10
7秒前
fy完成签到,获得积分10
12秒前
Lyw完成签到 ,获得积分10
13秒前
万灵竹完成签到 ,获得积分10
13秒前
cq_2完成签到,获得积分0
15秒前
YiWei完成签到 ,获得积分10
17秒前
future完成签到 ,获得积分10
18秒前
ymxlcfc完成签到 ,获得积分10
18秒前
19秒前
余味应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
shirley要奋斗完成签到 ,获得积分10
24秒前
25秒前
wanghao完成签到 ,获得积分10
25秒前
25秒前
28秒前
哈哈完成签到 ,获得积分10
29秒前
32秒前
CUN完成签到,获得积分10
35秒前
科研执修完成签到,获得积分10
35秒前
mrwang完成签到 ,获得积分10
37秒前
Tysonqu完成签到,获得积分10
38秒前
qqqq发布了新的文献求助10
39秒前
海边听海完成签到 ,获得积分0
42秒前
苏苏完成签到 ,获得积分10
42秒前
50秒前
鸡蛋叉烧肠完成签到 ,获得积分10
51秒前
小二郎应助hebhm采纳,获得10
52秒前
52秒前
璇璇完成签到 ,获得积分10
53秒前
鑫光熠熠完成签到 ,获得积分10
53秒前
细腻的雅山完成签到 ,获得积分10
56秒前
重要的天空完成签到,获得积分10
59秒前
白昼の月完成签到 ,获得积分0
1分钟前
1分钟前
back you up应助steven采纳,获得150
1分钟前
甄遥完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784835
求助须知:如何正确求助?哪些是违规求助? 3330072
关于积分的说明 10244317
捐赠科研通 3045457
什么是DOI,文献DOI怎么找? 1671691
邀请新用户注册赠送积分活动 800613
科研通“疑难数据库(出版商)”最低求助积分说明 759544