Multiscale functional connectome abnormality predicts cognitive outcomes in subcortical ischemic vascular disease

异常 认知 神经科学 认知障碍 疾病 连接体 计算机科学 心理学 人工智能 功能连接 医学 病理 精神科
作者
Mianxin Liu,Yao Wang,Han Zhang,Qing Yang,Feng Shi,Yan Zhou,Dinggang Shen
出处
期刊:Cerebral Cortex [Oxford University Press]
卷期号:32 (21): 4641-4656 被引量:15
标识
DOI:10.1093/cercor/bhab507
摘要

Abstract Subcortical ischemic vascular disease could induce subcortical vascular cognitive impairments (SVCIs), such as amnestic mild cognitive impairment (aMCI) and non-amnestic MCI (naMCI), or sometimes no cognitive impairment (NCI). Previous SVCI studies focused on focal structural lesions such as lacunes and microbleeds, while the functional connectivity networks (FCNs) from functional magnetic resonance imaging are drawing increasing attentions. Considering remarkable variations in structural lesion sizes, we expect that seeking abnormalities in the multiscale hierarchy of brain FCNs could be more informative to differentiate SVCI patients with varied outcomes (NCI, aMCI, and naMCI). Driven by this hypothesis, we first build FCNs based on the atlases at multiple spatial scales for group comparisons and found distributed FCN differences across different spatial scales. We then verify that combining multiscale features in a prediction model could improve differentiation accuracy among NCI, aMCI, and naMCI. Furthermore, we propose a graph convolutional network to integrate the naturally emerged multiscale features based on the brain network hierarchy, which significantly outperforms all other competing methods. In addition, the predictive features derived from our method consistently emphasize the limbic network in identifying aMCI across the different scales. The proposed analysis provides a better understanding of SVCI and may benefit its clinical diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助冷酷夏烟采纳,获得10
刚刚
林志迎发布了新的文献求助10
刚刚
ghy完成签到 ,获得积分10
1秒前
善学以致用应助xixili采纳,获得10
1秒前
2秒前
3秒前
汉堡包应助嘎嘎采纳,获得10
4秒前
典雅的夜安完成签到,获得积分10
4秒前
8848发布了新的文献求助10
4秒前
狄百招完成签到,获得积分0
5秒前
kk99123应助超级的煎饼采纳,获得10
6秒前
7秒前
HUB发布了新的文献求助10
7秒前
再睡十分钟完成签到,获得积分10
7秒前
性感母蟑螂完成签到 ,获得积分10
9秒前
kabane发布了新的文献求助20
10秒前
xue完成签到,获得积分20
11秒前
13秒前
哈哈完成签到 ,获得积分10
13秒前
14秒前
16秒前
17秒前
17秒前
大个应助Nuyoah采纳,获得10
18秒前
Zhangll发布了新的文献求助10
18秒前
失眠哈密瓜完成签到 ,获得积分10
19秒前
彭于晏应助科研通管家采纳,获得10
21秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
1111应助科研通管家采纳,获得10
21秒前
21秒前
桐桐应助科研通管家采纳,获得10
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
mdgas应助科研通管家采纳,获得10
21秒前
1111应助科研通管家采纳,获得10
21秒前
22秒前
22秒前
22秒前
22秒前
22秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090140
求助须知:如何正确求助?哪些是违规求助? 3628781
关于积分的说明 11504875
捐赠科研通 3341028
什么是DOI,文献DOI怎么找? 1836546
邀请新用户注册赠送积分活动 904521
科研通“疑难数据库(出版商)”最低求助积分说明 822367