Deep Learning Predicts Rapid Over-softening and Shelf Life in Persimmon Fruits

深度学习 人工智能 卷积神经网络 RGB颜色模型 二元分类 计算机科学 特征(语言学) 软化 人工神经网络 深层神经网络 机器学习 反向传播 模式识别(心理学) 二进制数 数学 统计 支持向量机 哲学 算术 语言学
作者
Maria Suzuki,Kanae Masuda,Hideaki Asakuma,Kouki Takeshita,Kohei Baba,Yasutaka Kubo,Koichiro Ushijima,Seiichi Uchida,Takashi Akagi
出处
期刊:The Horticulture Journal [Japanese Society for Horticultural Science]
卷期号:91 (3): 408-415 被引量:22
标识
DOI:10.2503/hortj.utd-323
摘要

In contrast to the progress in the research on physiological disorders relating to shelf life in fruit crops, it has been difficult to non-destructively predict their occurrence. Recent high-tech instruments have gradually enabled non-destructive predictions for various disorders in some crops, while there are still issues in terms of efficiency and costs. Here, we propose application of a deep neural network (or simply deep learning) to simple RGB images to predict a severe fruit disorder in persimmon, rapid over-softening. With 1,080 RGB images of 'Soshu' persimmon fruits, three convolutional neural networks (CNN) were examined to predict rapid over-softened fruits with a binary classification and the date to fruit softening. All of the examined CNN models worked successfully for binary classification of the rapid over-softened fruits and the controls with > 80% accuracy using multiple criteria. Furthermore, the prediction values (or confidence) in the binary classification were correlated to the date to fruit softening. Although the features for classification by deep learning have been thought to be in a black box by conventional standards, recent feature visualization methods (or "explainable" deep learning) has allowed identification of the relevant regions in the original images. We applied Grad-CAM, Guided backpropagation, and layer-wise relevance propagation (LRP), to find early symptoms for CNNs classification of rapid over-softened fruits. The focus on the relevant regions tended to be on color unevenness on the surface of the fruit, especially in the peripheral regions. These results suggest that deep learning frameworks could potentially provide new insights into early physiological symptoms of which researchers are unaware.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
husy完成签到,获得积分10
刚刚
1秒前
希望天下0贩的0应助qianqian采纳,获得10
2秒前
3秒前
NexusExplorer应助球球采纳,获得10
5秒前
容若发布了新的文献求助10
5秒前
摇月黄昏发布了新的文献求助10
5秒前
研友_GZ3zRn发布了新的文献求助10
7秒前
高高惜寒完成签到,获得积分10
7秒前
8秒前
8秒前
困困包应助王小果采纳,获得10
11秒前
科里斯皮尔应助王小果采纳,获得10
11秒前
科研通AI6应助冯大夫采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
15秒前
16秒前
多非计划完成签到,获得积分10
17秒前
前度刘郎应助fanqinge采纳,获得10
18秒前
爆米花应助kuzzi采纳,获得10
18秒前
19秒前
21秒前
chen发布了新的文献求助10
23秒前
23秒前
23秒前
科研通AI5应助郎谋采纳,获得10
24秒前
科学家发布了新的文献求助10
25秒前
Lucas应助容若采纳,获得10
25秒前
充电宝应助yyy采纳,获得10
25秒前
糖糖完成签到 ,获得积分10
27秒前
27秒前
占万声完成签到,获得积分10
28秒前
流萤发布了新的文献求助10
29秒前
可爱的函函应助仔仔采纳,获得10
29秒前
29秒前
chen完成签到,获得积分10
31秒前
七月发布了新的文献求助10
32秒前
32秒前
眉间尺发布了新的文献求助50
34秒前
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937