Scalable and Accurate Test Case Prioritization in Continuous Integration Contexts

计算机科学 回归检验 可扩展性 数据挖掘 优先次序 集合(抽象数据类型) 测试用例 机器学习 软件 回归分析 回归 人工智能 软件系统 数据库 精神分析 经济 软件建设 程序设计语言 管理科学 心理学
作者
Ahmadreza Saboor Yaraghi,Mojtaba Bagherzadeh,Nafıseh Kahani,Lionel Briand
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:49 (4): 1615-1639 被引量:33
标识
DOI:10.1109/tse.2022.3184842
摘要

Continuous Integration (CI) requires efficient regression testing to ensure software quality without significantly delaying its CI builds. This warrants the need for techniques to reduce regression testing time, such as Test Case Prioritization (TCP) techniques that prioritize the execution of test cases to detect faults as early as possible. Many recent TCP studies employ various Machine Learning (ML) techniques to deal with the dynamic and complex nature of CI. However, most of them use a limited number of features for training ML models and evaluate the models on subjects for which the application of TCP makes little practical sense, due to their small regression testing time and low number of failed builds. In this work, we first define, at a conceptual level, a data model that captures data sources and their relations in a typical CI environment. Second, based on this data model, we define a comprehensive set of features that covers all features previously used by related studies. Third, we develop methods and tools to collect the defined features for 25 open-source software systems with enough failed builds and whose regression testing takes at least five minutes. Fourth, relying on the collected dataset containing a comprehensive feature set, we answer four research questions concerning data collection time, the effectiveness of ML-based TCP, the impact of the features on effectiveness, the decay of ML-based TCP models over time, and the trade-off between data collection time and the effectiveness of ML-based TCP techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助论文写到头秃采纳,获得10
1秒前
gemini0615发布了新的文献求助10
1秒前
yokkio完成签到,获得积分10
1秒前
英勇雅琴完成签到,获得积分10
1秒前
htm426完成签到,获得积分10
2秒前
呆萌太阳完成签到,获得积分20
2秒前
3秒前
3秒前
tian发布了新的文献求助10
4秒前
yu发布了新的文献求助10
4秒前
aloe完成签到,获得积分10
5秒前
球球发布了新的文献求助10
6秒前
猫与咖啡完成签到,获得积分10
6秒前
916举报momo求助涉嫌违规
7秒前
7秒前
了0完成签到 ,获得积分10
7秒前
小何完成签到 ,获得积分10
8秒前
9秒前
Eton完成签到,获得积分10
10秒前
清客完成签到 ,获得积分10
10秒前
111发布了新的文献求助10
10秒前
烟花应助李李采纳,获得10
10秒前
lyy完成签到 ,获得积分10
11秒前
卡牌大师完成签到,获得积分10
11秒前
yshog发布了新的文献求助10
12秒前
1z完成签到,获得积分10
12秒前
cldg发布了新的文献求助10
13秒前
英姑应助gemini0615采纳,获得10
13秒前
yu完成签到,获得积分10
14秒前
15秒前
17秒前
msk完成签到 ,获得积分10
17秒前
19秒前
珥多完成签到 ,获得积分10
19秒前
上官若男应助gemini0615采纳,获得10
20秒前
Tzzl0226完成签到,获得积分10
20秒前
独特的沛凝完成签到,获得积分10
21秒前
可爱的函函应助yshog采纳,获得10
22秒前
22秒前
二二完成签到 ,获得积分10
23秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781113
求助须知:如何正确求助?哪些是违规求助? 3326545
关于积分的说明 10227650
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734