计算机科学
回归检验
可扩展性
数据挖掘
优先次序
集合(抽象数据类型)
测试用例
机器学习
软件
回归分析
回归
人工智能
软件系统
数据库
精神分析
经济
软件建设
程序设计语言
管理科学
心理学
作者
Ahmadreza Saboor Yaraghi,Mojtaba Bagherzadeh,Nafıseh Kahani,Lionel Briand
标识
DOI:10.1109/tse.2022.3184842
摘要
Continuous Integration (CI) requires efficient regression testing to ensure software quality without significantly delaying its CI builds. This warrants the need for techniques to reduce regression testing time, such as Test Case Prioritization (TCP) techniques that prioritize the execution of test cases to detect faults as early as possible. Many recent TCP studies employ various Machine Learning (ML) techniques to deal with the dynamic and complex nature of CI. However, most of them use a limited number of features for training ML models and evaluate the models on subjects for which the application of TCP makes little practical sense, due to their small regression testing time and low number of failed builds. In this work, we first define, at a conceptual level, a data model that captures data sources and their relations in a typical CI environment. Second, based on this data model, we define a comprehensive set of features that covers all features previously used by related studies. Third, we develop methods and tools to collect the defined features for 25 open-source software systems with enough failed builds and whose regression testing takes at least five minutes. Fourth, relying on the collected dataset containing a comprehensive feature set, we answer four research questions concerning data collection time, the effectiveness of ML-based TCP, the impact of the features on effectiveness, the decay of ML-based TCP models over time, and the trade-off between data collection time and the effectiveness of ML-based TCP techniques.
科研通智能强力驱动
Strongly Powered by AbleSci AI