A multivariate distance-based analytic framework for connectome-wide association studies

连接体 联想(心理学) 计算机科学 多元统计 人工智能 心理学 机器学习 神经科学 功能连接 心理治疗师
作者
Zarrar Shehzad,Clare Kelly,Philip T. Reiss,R. Cameron Craddock,John W. Emerson,Katie L. McMahon,David A. Copland,F. Xavier Castellanos,Michael P. Milham
出处
期刊:NeuroImage [Elsevier BV]
卷期号:93: 74-94 被引量:176
标识
DOI:10.1016/j.neuroimage.2014.02.024
摘要

The identification of phenotypic associations in high-dimensional brain connectivity data represents the next frontier in the neuroimaging connectomics era. Exploration of brain–phenotype relationships remains limited by statistical approaches that are computationally intensive, depend on a priori hypotheses, or require stringent correction for multiple comparisons. Here, we propose a computationally efficient, data-driven technique for connectome-wide association studies (CWAS) that provides a comprehensive voxel-wise survey of brain–behavior relationships across the connectome; the approach identifies voxels whose whole-brain connectivity patterns vary significantly with a phenotypic variable. Using resting state fMRI data, we demonstrate the utility of our analytic framework by identifying significant connectivity–phenotype relationships for full-scale IQ and assessing their overlap with existent neuroimaging findings, as synthesized by openly available automated meta-analysis (www.neurosynth.org). The results appeared to be robust to the removal of nuisance covariates (i.e., mean connectivity, global signal, and motion) and varying brain resolution (i.e., voxelwise results are highly similar to results using 800 parcellations). We show that CWAS findings can be used to guide subsequent seed-based correlation analyses. Finally, we demonstrate the applicability of the approach by examining CWAS for three additional datasets, each encompassing a distinct phenotypic variable: neurotypical development, Attention-Deficit/Hyperactivity Disorder diagnostic status, and L-DOPA pharmacological manipulation. For each phenotype, our approach to CWAS identified distinct connectome-wide association profiles, not previously attainable in a single study utilizing traditional univariate approaches. As a computationally efficient, extensible, and scalable method, our CWAS framework can accelerate the discovery of brain–behavior relationships in the connectome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
东风完成签到,获得积分10
2秒前
新德里梅塔洛1号完成签到,获得积分10
2秒前
4秒前
luckweb完成签到,获得积分10
5秒前
步步高完成签到,获得积分10
6秒前
jl完成签到,获得积分10
6秒前
Yi羿完成签到 ,获得积分10
6秒前
李小鑫吖完成签到,获得积分10
7秒前
8秒前
Tom完成签到,获得积分10
8秒前
宗映波完成签到 ,获得积分10
9秒前
luckweb发布了新的文献求助10
9秒前
兴奋小丸子完成签到,获得积分10
10秒前
墨池完成签到,获得积分10
12秒前
缥缈的绿兰完成签到,获得积分10
12秒前
西方印迹大王完成签到 ,获得积分10
13秒前
竹叶青发布了新的文献求助10
14秒前
天下无马完成签到 ,获得积分10
14秒前
西宁完成签到,获得积分10
15秒前
殷勤的凝海完成签到 ,获得积分10
18秒前
浅浅完成签到,获得积分10
24秒前
个性松完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
30秒前
帅气的藏鸟完成签到,获得积分10
33秒前
chrysan完成签到,获得积分10
33秒前
她的城完成签到,获得积分0
34秒前
JamesPei应助杨惠子采纳,获得10
34秒前
yingzaifeixiang完成签到 ,获得积分10
36秒前
甜甜的满天完成签到,获得积分10
39秒前
ZeSheng完成签到,获得积分10
40秒前
41秒前
lx完成签到,获得积分10
42秒前
42秒前
struggling完成签到,获得积分10
43秒前
八八九九九1完成签到,获得积分10
44秒前
ZoeyD完成签到 ,获得积分10
44秒前
ssassassassa完成签到 ,获得积分10
44秒前
明前黑羽完成签到,获得积分10
45秒前
淡然的糖豆完成签到 ,获得积分10
46秒前
为你等候完成签到,获得积分10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972830
求助须知:如何正确求助?哪些是违规求助? 3517174
关于积分的说明 11186554
捐赠科研通 3252797
什么是DOI,文献DOI怎么找? 1796634
邀请新用户注册赠送积分活动 876503
科研通“疑难数据库(出版商)”最低求助积分说明 805701