Why are double network hydrogels so tough?

韧性 自愈水凝胶 复合材料 脆性 极限抗拉强度 撕裂 断裂韧性 弹性模量 抗压强度 模数 聚电解质 聚合物 材料科学 高分子化学
作者
Jian Ping Gong
出处
期刊:Soft Matter [Royal Society of Chemistry]
卷期号:6 (12): 2583-2583 被引量:1969
标识
DOI:10.1039/b924290b
摘要

Double-network (DN) gels have drawn much attention as an innovative material having both high water content (ca. 90 wt%) and high mechanical strength and toughness. DN gels are characterized by a special network structure consisting of two types of polymer components with opposite physical natures: the minor component is abundantly cross-linked polyelectrolytes (rigid skeleton) and the major component comprises of poorly cross-linked neutral polymers (ductile substance). The former and the latter components are referred to as the first network and the second network, respectively, since the synthesis should be done in this order to realize high mechanical strength. For DN gels synthesized under suitable conditions (choice of polymers, feed compositions, atmosphere for reaction, etc.), they possess hardness (elastic modulus of 0.1–1.0 MPa), strength (failure tensile nominal stress 1–10 MPa, strain 1000–2000%; failure compressive nominal stress 20–60 MPa, strain 90–95%), and toughness (tearing fracture energy of 100∼1000 J m−2). These excellent mechanical performances are comparable to that of rubbers and soft load-bearing bio-tissues. The mechanical behaviors of DN gels are inconsistent with general mechanisms that enhance the toughness of soft polymeric materials. Thus, DN gels present an interesting and challenging problem in polymer mechanics. Extensive experimental and theoretical studies have shown that the toughening of DN gel is based on a local yielding mechanism, which has some common features with other brittle and ductile nano-composite materials, such as bones and dentins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风的季节完成签到,获得积分0
1秒前
雾影觅光完成签到,获得积分10
2秒前
Aruo完成签到,获得积分10
2秒前
小螃蟹完成签到 ,获得积分10
2秒前
啊啊啊完成签到 ,获得积分10
2秒前
QP完成签到,获得积分10
3秒前
ppc完成签到,获得积分10
4秒前
00发布了新的文献求助10
6秒前
清新的碧曼完成签到 ,获得积分10
6秒前
暗示完成签到 ,获得积分10
6秒前
萌神_HUGO完成签到,获得积分10
10秒前
丘比特应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
12秒前
乐乐应助科研通管家采纳,获得10
12秒前
不倦应助科研通管家采纳,获得20
12秒前
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
852应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
天天快乐应助科研通管家采纳,获得10
13秒前
xx应助科研通管家采纳,获得10
13秒前
13秒前
sxr完成签到,获得积分10
13秒前
cdercder应助付冀川采纳,获得10
16秒前
16秒前
18秒前
田様应助岸边渔客采纳,获得10
18秒前
Leo完成签到,获得积分10
19秒前
爱笑的眼睛完成签到,获得积分10
20秒前
20秒前
21秒前
淡然以柳完成签到 ,获得积分10
23秒前
23秒前
在水一方应助00采纳,获得10
23秒前
24秒前
杨冠文发布了新的文献求助10
25秒前
wxnice发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777767
求助须知:如何正确求助?哪些是违规求助? 3323293
关于积分的说明 10213450
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798152
科研通“疑难数据库(出版商)”最低求助积分说明 758275