Prototype Sodium-Ion Batteries Using Air-Stable and Co/Ni-Free O3-Layered Metal Oxide Cathode

阴极 氧化物 材料科学 金属 离子 化学工程 无机化学 冶金 化学 电气工程 工程类 有机化学
出处
期刊:Meeting abstracts
标识
DOI:10.1149/ma2016-01/2/296
摘要

at an average storage voltage of 3.2 V with long cycle life. When coupled with hard carbon anode, a prototype rechargeable sodium-ion battery offers an energy density of 210 Wh kg −1 , a round-trip energy effi ciency of 90%, high rate capability, and excellent cycling stability. These desired performances make this system to be closer to the level of practical applications. The Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 (Na 0.9 [Cu II 0.22 Fe III 0.30 Mn III 0.16 Mn IV 0.32 ]O 2 ) material was synthesized by a simple solid-state reaction at 850 °C in air atmosphere using precursors of Na 2 CO 3 , CuO, Fe 2 O 3 , and Mn 2 O 3 . The crystal structure of the as-synthesized material was determined by X-ray diffraction (XRD) as shown in Figure 1 a together with its refi nement results by the Rietveld method (see Table S1, Supporting Information). It can be seen that all the Bragg diffraction peaks are in excellent agreement with the JC DS No. 01-0821495 (O3-type α-NaFeO 2 ) and can be indexed to a hexagonal layered structure with a space group of 3 R m − , indicative of a typical O3-type layered structure (note that the letter “O” refers to the Na coordination environment of octahedral site whereas the number “3” refers to the number of MO 2 slab according to Delmas’ notation. [ 13 ] A schematic illustration of the O3-type structure is also shown in Figure 1 b. The structure refi nement gives the lattice parameters a = 2.9587(7) A, c = 16.3742(6) A. The lattice parameter of c -axis is slightly larger than that of other O3-type materials [ 5f–h , 6b , 8a ] because the Na content is less than 1. The inductively coupled plasma (ICP) result confi rms the composition of Na 0.89 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 (see Table S2, Supporting Information). The morphology of the resulting sample is shown in Figure 1 c. The distribution of the particle size is in the range of 10–30 μm with about 3 μm sized primary particle agglomerations together (Figure 1 d). Most importantly, unlike other O3-type materials, [ 4–9,12 ] this material is very stable against water. In order to confi rm this, we intentionally design an accelerated aging experiment as described in the Experimental Section which was verifi ed by LiMO 2 as shown in Figure S1 (Supporting Information). We placed the as-synthesized material in deionized water for 3 d and then dried the material at 100 °C for overnight. The obtained material was checked by XRD again. It can be seen that the XRD pattern is nearly identical to that of the as-synthesized material, which is very different from other O3-type materials as shown in Figure S2 (Supporting Information). These results suggest that the O3-Na 0.9 [Cu 0.22 Fe 0.30 Mn 0.48 ]O 2 is very stable against water. Furthermore, after the material was stored in air for one month Large-scale electrical energy storage systems are one of the core technologies in renewable energies and smart grid, among which sodium-ion batteries show great promise due to the abundant sodium resources. Layered metal oxides (of general formula: A x MO 2 , where A = Li, Na; M = Co, Ni, Mn, Cr, Fe, etc.) with alternating alkali metal layer and transition metal layer have long been of particular interest since the early 1980s as an important class of cathode materials for rechargeable batteries due to their easy synthesis and high energy density. [ 1 ] One of the most successful examples is LiCoO 2 , [ 1a ] which is commonly used as a cathode in lithium-ion batteries with the highest volumetric energy density for portable electronic devices. Its metal substituted materials (LiCo 1− x − y − z Ni x Mn y Al z O 2 ) are being used in power batteries for electric vehicles. In the case of sodiumion batteries operated at room temperature which are proposed for large-scale electrical energy storage owing to the naturally abundant sodium resources in recent years. [ 2,3 ] Na x CoO 2 that can electrochemically and reversibly intercalate Na is the fi rst example, [ 1b ] then a large number of layered metal oxides have been extensively exploited. [ 4–12 ] However, the practical applications have been hindered by two major challenges. First, unlike LiMO 2 , almost all the Na x MO 2 are not stable against moisture (either they can be oxidized by water or water/carbon dioxide molecules can be intercalated into alkali metal layer). [ 4–9,11,12 ]
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
阳佟半仙完成签到,获得积分10
2秒前
xzy完成签到,获得积分10
2秒前
122发布了新的文献求助10
3秒前
刘小t发布了新的文献求助10
3秒前
怡然小凝发布了新的文献求助10
3秒前
ding应助谷粱初晴采纳,获得10
3秒前
28发布了新的文献求助10
3秒前
格兰德法泽尔完成签到,获得积分10
6秒前
6秒前
8秒前
9秒前
9秒前
爆米花应助刘小t采纳,获得10
10秒前
11秒前
Hello应助28采纳,获得10
11秒前
asasd完成签到,获得积分10
13秒前
xzy发布了新的文献求助10
14秒前
共享精神应助怡然小凝采纳,获得10
14秒前
啦啦啦完成签到,获得积分10
14秒前
俏皮土豆发布了新的文献求助20
15秒前
18秒前
cctv18给务实白开水的求助进行了留言
19秒前
23秒前
24秒前
爆米花应助高兴的欣欣欣采纳,获得10
25秒前
打打应助SCI-HUB采纳,获得10
25秒前
ruirui发布了新的文献求助10
27秒前
充电宝应助农大彭于晏采纳,获得10
27秒前
在水一方应助meixinhu采纳,获得10
30秒前
33秒前
星辰大海应助xfwd采纳,获得10
33秒前
36秒前
37秒前
38秒前
huy发布了新的文献求助10
38秒前
39秒前
39秒前
SCI-HUB发布了新的文献求助10
40秒前
41秒前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471654
求助须知:如何正确求助?哪些是违规求助? 2138142
关于积分的说明 5448480
捐赠科研通 1862080
什么是DOI,文献DOI怎么找? 926040
版权声明 562747
科研通“疑难数据库(出版商)”最低求助积分说明 495308