Electrical, Mechanical, and Capacity Percolation Leads to High-Performance MoS2/Nanotube Composite Lithium Ion Battery Electrodes

材料科学 碳纳米管 阳极 纳米管 电极 渗流阈值 复合数 复合材料 锂(药物) 电导率 电阻率和电导率 韧性 锂离子电池 纳米技术 化学工程 电池(电) 化学 电气工程 物理 工程类 内分泌学 物理化学 功率(物理) 医学 量子力学
作者
Yuping Liu,Xiaoyun He,Damien Hanlon,Andrew Harvey,Umar Khan,Yanguang Li,Jonathan N. Coleman
出处
期刊:ACS Nano [American Chemical Society]
卷期号:10 (6): 5980-5990 被引量:179
标识
DOI:10.1021/acsnano.6b01505
摘要

Advances in lithium ion batteries would facilitate technological developments in areas from electrical vehicles to mobile communications. While two-dimensional systems like MoS2 are promising electrode materials due to their potentially high capacity, their poor rate capability and low cycle stability are severe handicaps. Here, we study the electrical, mechanical, and lithium storage properties of solution-processed MoS2/carbon nanotube anodes. Nanotube addition gives up to 10(10)-fold and 40-fold increases in electrical conductivity and mechanical toughness, respectively. The increased conductivity results in up to a 100× capacity enhancement to ∼1200 mAh/g (∼3000 mAh/cm(3)) at 0.1 A/g, while the improved toughness significantly boosts cycle stability. Composites with 20 wt % nanotubes combine high reversible capacity with excellent cycling stability (e.g., ∼950 mAh/g after 500 cycles at 2 A/g) and high rate capability (∼600 mAh/g at 20 A/g). The conductivity, toughness, and capacity scale with nanotube content according to percolation theory, while the stability increases sharply at the mechanical percolation threshold. We believe that the improvements in conductivity and toughness obtained after addition of nanotubes can be transferred to other electrode materials, such as silicon nanoparticles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
911发布了新的文献求助10
2秒前
3秒前
细腻的迎海完成签到,获得积分20
3秒前
唠叨的耷发布了新的文献求助10
3秒前
蝶儿完成签到,获得积分10
3秒前
时不我待C完成签到,获得积分10
3秒前
洁净的幼珊完成签到,获得积分10
3秒前
nini发布了新的文献求助10
4秒前
北海怪兽完成签到 ,获得积分10
4秒前
lwccc发布了新的文献求助10
5秒前
CodeCraft应助宛雷雅采纳,获得10
5秒前
无极微光应助花骨头采纳,获得30
5秒前
星辰大海应助麦子采纳,获得10
6秒前
某不科学的萌萌应助静静采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
WQ完成签到 ,获得积分10
8秒前
陈思雨发布了新的文献求助10
8秒前
快乐含蕾发布了新的文献求助10
9秒前
liruibai完成签到,获得积分10
9秒前
泡泡完成签到,获得积分10
9秒前
咸鱼发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
13秒前
王十七完成签到 ,获得积分10
13秒前
911完成签到,获得积分10
13秒前
李健的粉丝团团长应助QQQ采纳,获得10
13秒前
充电宝应助夕子爱科研采纳,获得10
15秒前
15秒前
Jasper应助yiyi采纳,获得10
15秒前
15秒前
哎呀哎呀发布了新的文献求助30
16秒前
16秒前
16秒前
n1gern发布了新的文献求助10
17秒前
lwccc完成签到,获得积分10
18秒前
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5611163
求助须知:如何正确求助?哪些是违规求助? 4695678
关于积分的说明 14887818
捐赠科研通 4724699
什么是DOI,文献DOI怎么找? 2545514
邀请新用户注册赠送积分活动 1510182
关于科研通互助平台的介绍 1473149