亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A high-dimensional feature selection method based on modified Gray Wolf Optimization

初始化 计算机科学 特征选择 人工智能 分类器(UML) 模式识别(心理学) 数据挖掘 差异进化 熵(时间箭头) 算法 量子力学 物理 程序设计语言
作者
Hongyu Pan,Shanxiong Chen,Hailing Xiong
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:135: 110031-110031 被引量:84
标识
DOI:10.1016/j.asoc.2023.110031
摘要

For data mining tasks on high-dimensional data, feature selection is a necessary pre-processing stage that plays an important role in removing redundant or irrelevant features and improving classifier performance. The Gray Wolf optimization algorithm is a global search mechanism with promising applications in feature selection, but tends to stagnate in high-dimensional problems with locally optimal solutions. In this paper, a modified gray wolf optimization algorithm is proposed for feature selection of high-dimensional data. The algorithm introduces ReliefF algorithm and Coupla entropy in the initialization process, which effectively improves the quality of the initial population. In addition, modified gray wolf optimization includes two new search strategies: first, a competitive guidance strategy is proposed to update individual positions, which make the algorithm’s search more flexible; second, a differential evolution-based leader wolf enhancement strategy is proposed to find a better position where the leader wolf may exist and replace it, which can prevent the algorithm from falling into local optimum. The results on 10 high-dimensional small-sample gene expression datasets demonstrate that the proposed algorithm selects less than 0.67% of the features, improves the classification accuracy while further reducing the number of features, and obtains very competitive results compared with some advanced feature selection methods. The comprehensive study analysis shows that proposed algorithm better balances the exploration and exploration balance, and the two search strategies are conducive to the improvement of gray wolf optimization search capability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助popingcandy采纳,获得10
13秒前
21秒前
XY完成签到,获得积分20
23秒前
活力广缘完成签到,获得积分10
24秒前
popingcandy发布了新的文献求助10
26秒前
XY发布了新的文献求助10
46秒前
abc完成签到 ,获得积分10
51秒前
alex_zhao完成签到,获得积分10
1分钟前
1分钟前
hyg发布了新的文献求助10
1分钟前
present完成签到,获得积分20
1分钟前
ma发布了新的文献求助10
1分钟前
2分钟前
wack发布了新的文献求助10
2分钟前
苦逼的医学生陳完成签到 ,获得积分10
2分钟前
科研通AI5应助popingcandy采纳,获得10
2分钟前
2分钟前
2分钟前
popingcandy发布了新的文献求助10
2分钟前
郗妫完成签到,获得积分10
2分钟前
popingcandy完成签到,获得积分20
2分钟前
你估下我叫乜嘢名完成签到,获得积分10
2分钟前
不动的大电视机完成签到,获得积分10
3分钟前
henxi发布了新的文献求助10
3分钟前
3分钟前
烟花应助三木足球采纳,获得10
3分钟前
wack发布了新的文献求助10
3分钟前
SciGPT应助欢喜的怜菡采纳,获得10
3分钟前
欢喜的怜菡完成签到,获得积分10
3分钟前
小马甲应助三木足球采纳,获得10
4分钟前
4分钟前
4分钟前
充电宝应助三木足球采纳,获得10
4分钟前
思源应助henxi采纳,获得10
4分钟前
CipherSage应助三木足球采纳,获得10
4分钟前
天天快乐应助三木足球采纳,获得10
4分钟前
和光同尘完成签到,获得积分10
4分钟前
4分钟前
henxi发布了新的文献求助10
4分钟前
顾矜应助三木足球采纳,获得10
4分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675647
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468