摘要
HomeRadiologyVol. 306, No. 2 PreviousNext Reviews and CommentaryEditorial–Centennial ContentAdvances in Thoracic Imaging: Key Developments in the Past Decade and Future DirectionsMizuki Nishino , Mark L. SchieblerMizuki Nishino , Mark L. SchieblerAuthor AffiliationsFrom the Department of Radiology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston MA (M.N.); and Department of Radiology, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wis (M.L.S.).Address correspondence to M.N. (email: [email protected]).Mizuki Nishino Mark L. SchieblerPublished Online:Jan 10 2023https://doi.org/10.1148/radiol.222536MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. National Lung Screening Trial Research Team; Aberle DR, Berg CD, et al. The National Lung Screening Trial: overview and study design. Radiology 2011;258(1):243–253. Link, Google Scholar2. Liang M, Tang W, Xu DM, et al. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology 2016;281(1):279–288. Link, Google Scholar3. Beig N, Khorrami M, Alilou M, et al. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology 2019;290(3):783–792. Link, Google Scholar4. Wang GX, Baggett TP, Pandharipande PV, et al. Barriers to Lung Cancer Screening Engagement from the Patient and Provider Perspective. Radiology 2019;290(2):278–287. Link, Google Scholar5. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017;284(1):228–243. Link, Google Scholar6. Zhou M, Leung A, Echegaray S, et al. Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology 2018;286(1):307–315. Link, Google Scholar7. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016;281(3):947–957. Link, Google Scholar8. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: Response assessment in lung cancer in the era of genomic medicine. Radiology 2014;271(1):6–27. Link, Google Scholar9. Park H, Sholl LM, Hatabu H, Awad MM, Nishino M. Imaging of Precision Therapy for Lung Cancer: Current State of the Art. Radiology 2019;293(1):15–29. Link, Google Scholar10. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017;284(2):574–582. Link, Google Scholar11. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology 2019;291(1):196–202. Link, Google Scholar12. Nam JG, Park S, Hwang EJ, et al. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology 2019;290(1):218–228. Link, Google Scholar13. Chung M, Bernheim A, Mei X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 2020;295(1):202–207. Link, Google Scholar14. Lei J, Li J, Li X, Qi X. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):18. Link, Google Scholar15. Song F, Shi N, Shan F, et al. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):210–217. Link, Google Scholar16. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020;296(2):E72–E78. Link, Google Scholar17. Pan F, Ye T, Sun P, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 2020;295(3):715–721. Link, Google Scholar18. Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. Radiology 2020;296(2):E79–E85. Link, Google Scholar19. Rubin GD, Ryerson CJ, Haramati LB, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology 2020;296(1):172–180. fi Link, Google Scholar20. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology 2020;296(2):E46–E54. Link, Google Scholar21. Li L, Qin L, Xu Z, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020;296(2):E65–E71. Link, Google Scholar22. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296(2):E32–E40. Link, Google Scholar23. Fang Y, Zhang H, Xie J, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020;296(2):E115–E117. Link, Google Scholar24. Prokop M, van Everdingen W, van Rees Vellinga T, et al; COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology 2020;296(2):E97–E104. Link, Google Scholar25. Suh YJ, Hong H, Ohana M, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology 2021;298(2):E70–E80. Link, Google Scholar26. Han X, Fan Y, Alwalid O, et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021;299(1):E177–E186. Link, Google Scholar27. Pan F, Yang L, Liang B, et al. Chest CT Patterns from Diagnosis to 1 Year of Follow-up in Patients with COVID-19. Radiology 2022;302(3):709–719. Link, Google Scholar28. Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011;260(1):18–39. Link, Google Scholar29. Ohno Y, Seo JB, Parraga G, et al. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021;299(3):508–523. Link, Google Scholar30. Gefter WB, Lee KS, Schiebler ML, et al. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021;299(3):524–538. Link, Google Scholar31. Hatabu H, Ohno Y, Gefter WB, et alFleischner Society. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020;297(2):286–301. Link, Google Scholar32. Matheson AM, McIntosh MJ, Kooner HK, et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-acute COVID-19 Syndrome. Radiology 2022;305(2):466–476. Link, Google Scholar33. Mistretta CA, Crummy AB, Strother CM. Digital angiography: a perspective. Radiology 1981;139(2):273–276. Link, Google Scholar34. Gu T, Korosec FR, Block WF, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 2005;26(4):743–749. Medline, Google Scholar35. Mistretta CA. Breaking Angiographic Speed Limits: Accelerated 4D MRA and 4D DSA Using Undersampled Acquisition and Constrained Reconstruction. Lecture presented at: 2012 RSNA Annual Meeting; November 29, 2012; Chicago, IL. Google Scholar36. Pickhardt PJ. Value-added Opportunistic CT Screening: State of the Art. Radiology 2022;303(2):241–254. Link, Google Scholar37. McLoud T. Thoracic Radiology: Recent Developments and Future Trends. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.223121. Published online January 17, 2023. Google Scholar38. Yoon SH, Lee JH, Koh J, et al. An Integrated Radiologic–Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222600. Published online January 17, 2023. Google Scholar39. Lee KS, Jeong YJ, Wi YM, et al. Current and Emerging Knowledge in COVID-19. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222462. Published online January 10, 2023. Google Scholar40. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246(3):697–722. Link, Google Scholar41. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020;295(3):685–691. Link, Google Scholar42. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237(2):395–400. Link, Google Scholar43. Xie X, Zhong Z, Zhao W, et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR testing. Radiology 2020;296(2):E41–E45. Link, Google ScholarArticle HistoryReceived: Oct 3 2022Revision requested: Oct 12 2022Revision received: Oct 13 2022Accepted: Oct 20 2022Published online: Jan 10 2023 FiguresReferencesRelatedDetailsCited ByThoracic Radiology: Recent Developments and Future TrendsTheresa C. McLoud, Brent P. Little, 17 January 2023 | Radiology, Vol. 306, No. 2Recommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 306, No. 2 Metrics Altmetric Score PDF download