Advances in Thoracic Imaging: Key Developments in the Past Decade and Future Directions

医学 钥匙(锁) 医学物理学 放射科 计算机安全 计算机科学
作者
Mizuki Nishino,Mark L. Schiebler
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:1
标识
DOI:10.1148/radiol.222536
摘要

HomeRadiologyVol. 306, No. 2 PreviousNext Reviews and CommentaryEditorial–Centennial ContentAdvances in Thoracic Imaging: Key Developments in the Past Decade and Future DirectionsMizuki Nishino , Mark L. SchieblerMizuki Nishino , Mark L. SchieblerAuthor AffiliationsFrom the Department of Radiology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston MA (M.N.); and Department of Radiology, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wis (M.L.S.).Address correspondence to M.N. (email: [email protected]).Mizuki Nishino Mark L. SchieblerPublished Online:Jan 10 2023https://doi.org/10.1148/radiol.222536MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. National Lung Screening Trial Research Team; Aberle DR, Berg CD, et al. The National Lung Screening Trial: overview and study design. Radiology 2011;258(1):243–253. Link, Google Scholar2. Liang M, Tang W, Xu DM, et al. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology 2016;281(1):279–288. Link, Google Scholar3. Beig N, Khorrami M, Alilou M, et al. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology 2019;290(3):783–792. Link, Google Scholar4. Wang GX, Baggett TP, Pandharipande PV, et al. Barriers to Lung Cancer Screening Engagement from the Patient and Provider Perspective. Radiology 2019;290(2):278–287. Link, Google Scholar5. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017;284(1):228–243. Link, Google Scholar6. Zhou M, Leung A, Echegaray S, et al. Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology 2018;286(1):307–315. Link, Google Scholar7. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016;281(3):947–957. Link, Google Scholar8. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: Response assessment in lung cancer in the era of genomic medicine. Radiology 2014;271(1):6–27. Link, Google Scholar9. Park H, Sholl LM, Hatabu H, Awad MM, Nishino M. Imaging of Precision Therapy for Lung Cancer: Current State of the Art. Radiology 2019;293(1):15–29. Link, Google Scholar10. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017;284(2):574–582. Link, Google Scholar11. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology 2019;291(1):196–202. Link, Google Scholar12. Nam JG, Park S, Hwang EJ, et al. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology 2019;290(1):218–228. Link, Google Scholar13. Chung M, Bernheim A, Mei X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 2020;295(1):202–207. Link, Google Scholar14. Lei J, Li J, Li X, Qi X. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):18. Link, Google Scholar15. Song F, Shi N, Shan F, et al. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):210–217. Link, Google Scholar16. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020;296(2):E72–E78. Link, Google Scholar17. Pan F, Ye T, Sun P, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 2020;295(3):715–721. Link, Google Scholar18. Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. Radiology 2020;296(2):E79–E85. Link, Google Scholar19. Rubin GD, Ryerson CJ, Haramati LB, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology 2020;296(1):172–180. fi Link, Google Scholar20. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology 2020;296(2):E46–E54. Link, Google Scholar21. Li L, Qin L, Xu Z, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020;296(2):E65–E71. Link, Google Scholar22. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296(2):E32–E40. Link, Google Scholar23. Fang Y, Zhang H, Xie J, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020;296(2):E115–E117. Link, Google Scholar24. Prokop M, van Everdingen W, van Rees Vellinga T, et al; COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology 2020;296(2):E97–E104. Link, Google Scholar25. Suh YJ, Hong H, Ohana M, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology 2021;298(2):E70–E80. Link, Google Scholar26. Han X, Fan Y, Alwalid O, et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021;299(1):E177–E186. Link, Google Scholar27. Pan F, Yang L, Liang B, et al. Chest CT Patterns from Diagnosis to 1 Year of Follow-up in Patients with COVID-19. Radiology 2022;302(3):709–719. Link, Google Scholar28. Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011;260(1):18–39. Link, Google Scholar29. Ohno Y, Seo JB, Parraga G, et al. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021;299(3):508–523. Link, Google Scholar30. Gefter WB, Lee KS, Schiebler ML, et al. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021;299(3):524–538. Link, Google Scholar31. Hatabu H, Ohno Y, Gefter WB, et alFleischner Society. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020;297(2):286–301. Link, Google Scholar32. Matheson AM, McIntosh MJ, Kooner HK, et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-acute COVID-19 Syndrome. Radiology 2022;305(2):466–476. Link, Google Scholar33. Mistretta CA, Crummy AB, Strother CM. Digital angiography: a perspective. Radiology 1981;139(2):273–276. Link, Google Scholar34. Gu T, Korosec FR, Block WF, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 2005;26(4):743–749. Medline, Google Scholar35. Mistretta CA. Breaking Angiographic Speed Limits: Accelerated 4D MRA and 4D DSA Using Undersampled Acquisition and Constrained Reconstruction. Lecture presented at: 2012 RSNA Annual Meeting; November 29, 2012; Chicago, IL. Google Scholar36. Pickhardt PJ. Value-added Opportunistic CT Screening: State of the Art. Radiology 2022;303(2):241–254. Link, Google Scholar37. McLoud T. Thoracic Radiology: Recent Developments and Future Trends. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.223121. Published online January 17, 2023. Google Scholar38. Yoon SH, Lee JH, Koh J, et al. An Integrated Radiologic–Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222600. Published online January 17, 2023. Google Scholar39. Lee KS, Jeong YJ, Wi YM, et al. Current and Emerging Knowledge in COVID-19. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222462. Published online January 10, 2023. Google Scholar40. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246(3):697–722. Link, Google Scholar41. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020;295(3):685–691. Link, Google Scholar42. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237(2):395–400. Link, Google Scholar43. Xie X, Zhong Z, Zhao W, et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR testing. Radiology 2020;296(2):E41–E45. Link, Google ScholarArticle HistoryReceived: Oct 3 2022Revision requested: Oct 12 2022Revision received: Oct 13 2022Accepted: Oct 20 2022Published online: Jan 10 2023 FiguresReferencesRelatedDetailsCited ByThoracic Radiology: Recent Developments and Future TrendsTheresa C. McLoud, Brent P. Little, 17 January 2023 | Radiology, Vol. 306, No. 2Recommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 306, No. 2 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
郭元强完成签到,获得积分10
1秒前
何晓俊完成签到,获得积分10
7秒前
木南大宝完成签到 ,获得积分10
11秒前
内向的火车完成签到 ,获得积分10
15秒前
豆子完成签到 ,获得积分10
17秒前
结实的小土豆完成签到 ,获得积分10
19秒前
Zhao完成签到 ,获得积分10
25秒前
灰鸽舞完成签到 ,获得积分10
28秒前
Cyrus完成签到 ,获得积分10
41秒前
小蕾完成签到 ,获得积分10
50秒前
yinlu完成签到 ,获得积分10
55秒前
李崋壹完成签到 ,获得积分10
55秒前
高大的莞完成签到 ,获得积分10
56秒前
lqz0103完成签到,获得积分10
59秒前
sisea完成签到 ,获得积分10
1分钟前
断章完成签到 ,获得积分10
1分钟前
兔兔完成签到 ,获得积分10
1分钟前
fujun0095完成签到,获得积分10
1分钟前
哈哈哈哈完成签到 ,获得积分10
1分钟前
陈俊雷完成签到 ,获得积分10
1分钟前
美满的小蘑菇完成签到 ,获得积分10
1分钟前
pzw完成签到 ,获得积分10
1分钟前
to完成签到 ,获得积分10
1分钟前
123完成签到 ,获得积分10
1分钟前
果宝特攻完成签到 ,获得积分10
1分钟前
不会游泳的鱼完成签到 ,获得积分10
1分钟前
江月年完成签到 ,获得积分10
1分钟前
大方的火龙果完成签到 ,获得积分10
1分钟前
感动白开水完成签到,获得积分10
1分钟前
郑洲完成签到 ,获得积分10
1分钟前
罗实完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
丰富梦容发布了新的文献求助10
1分钟前
2分钟前
2分钟前
mike2012完成签到 ,获得积分10
2分钟前
2分钟前
开放道天发布了新的文献求助10
2分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418267
捐赠科研通 2354453
什么是DOI,文献DOI怎么找? 1246090
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921