已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advances in Thoracic Imaging: Key Developments in the Past Decade and Future Directions

医学 钥匙(锁) 医学物理学 放射科 计算机安全 计算机科学
作者
Mizuki Nishino,Mark L. Schiebler
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (2) 被引量:1
标识
DOI:10.1148/radiol.222536
摘要

HomeRadiologyVol. 306, No. 2 PreviousNext Reviews and CommentaryEditorial–Centennial ContentAdvances in Thoracic Imaging: Key Developments in the Past Decade and Future DirectionsMizuki Nishino , Mark L. SchieblerMizuki Nishino , Mark L. SchieblerAuthor AffiliationsFrom the Department of Radiology, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, 450 Brookline Ave, Boston MA (M.N.); and Department of Radiology, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wis (M.L.S.).Address correspondence to M.N. (email: [email protected]).Mizuki Nishino Mark L. SchieblerPublished Online:Jan 10 2023https://doi.org/10.1148/radiol.222536MoreSectionsFull textPDF ToolsImage ViewerAdd to favoritesCiteTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinked In References1. National Lung Screening Trial Research Team; Aberle DR, Berg CD, et al. The National Lung Screening Trial: overview and study design. Radiology 2011;258(1):243–253. Link, Google Scholar2. Liang M, Tang W, Xu DM, et al. Low-Dose CT Screening for Lung Cancer: Computer-aided Detection of Missed Lung Cancers. Radiology 2016;281(1):279–288. Link, Google Scholar3. Beig N, Khorrami M, Alilou M, et al. Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas. Radiology 2019;290(3):783–792. Link, Google Scholar4. Wang GX, Baggett TP, Pandharipande PV, et al. Barriers to Lung Cancer Screening Engagement from the Patient and Provider Perspective. Radiology 2019;290(2):278–287. Link, Google Scholar5. MacMahon H, Naidich DP, Goo JM, et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017. Radiology 2017;284(1):228–243. Link, Google Scholar6. Zhou M, Leung A, Echegaray S, et al. Non-Small Cell Lung Cancer Radiogenomics Map Identifies Relationships between Molecular and Imaging Phenotypes with Prognostic Implications. Radiology 2018;286(1):307–315. Link, Google Scholar7. Huang Y, Liu Z, He L, et al. Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer. Radiology 2016;281(3):947–957. Link, Google Scholar8. Nishino M, Hatabu H, Johnson BE, McLoud TC. State of the art: Response assessment in lung cancer in the era of genomic medicine. Radiology 2014;271(1):6–27. Link, Google Scholar9. Park H, Sholl LM, Hatabu H, Awad MM, Nishino M. Imaging of Precision Therapy for Lung Cancer: Current State of the Art. Radiology 2019;293(1):15–29. Link, Google Scholar10. Lakhani P, Sundaram B. Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks. Radiology 2017;284(2):574–582. Link, Google Scholar11. Annarumma M, Withey SJ, Bakewell RJ, Pesce E, Goh V, Montana G. Automated Triaging of Adult Chest Radiographs with Deep Artificial Neural Networks. Radiology 2019;291(1):196–202. Link, Google Scholar12. Nam JG, Park S, Hwang EJ, et al. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs. Radiology 2019;290(1):218–228. Link, Google Scholar13. Chung M, Bernheim A, Mei X, et al. CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV). Radiology 2020;295(1):202–207. Link, Google Scholar14. Lei J, Li J, Li X, Qi X. CT Imaging of the 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):18. Link, Google Scholar15. Song F, Shi N, Shan F, et al. Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology 2020;295(1):210–217. Link, Google Scholar16. Wong HYF, Lam HYS, Fong AH, et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020;296(2):E72–E78. Link, Google Scholar17. Pan F, Ye T, Sun P, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology 2020;295(3):715–721. Link, Google Scholar18. Caruso D, Zerunian M, Polici M, et al. Chest CT Features of COVID-19 in Rome, Italy. Radiology 2020;296(2):E79–E85. Link, Google Scholar19. Rubin GD, Ryerson CJ, Haramati LB, et al. The Role of Chest Imaging in Patient Management during the COVID-19 Pandemic: A Multinational Consensus Statement from the Fleischner Society. Radiology 2020;296(1):172–180. fi Link, Google Scholar20. Bai HX, Hsieh B, Xiong Z, et al. Performance of Radiologists in Differentiating COVID-19 from Non-COVID-19 Viral Pneumonia at Chest CT. Radiology 2020;296(2):E46–E54. Link, Google Scholar21. Li L, Qin L, Xu Z, et al. Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology 2020;296(2):E65–E71. Link, Google Scholar22. Ai T, Yang Z, Hou H, et al. Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases. Radiology 2020;296(2):E32–E40. Link, Google Scholar23. Fang Y, Zhang H, Xie J, et al. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology 2020;296(2):E115–E117. Link, Google Scholar24. Prokop M, van Everdingen W, van Rees Vellinga T, et al; COVID-19 Standardized Reporting Working Group of the Dutch Radiological Society. CO-RADS: A Categorical CT Assessment Scheme for Patients Suspected of Having COVID-19-Definition and Evaluation. Radiology 2020;296(2):E97–E104. Link, Google Scholar25. Suh YJ, Hong H, Ohana M, et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology 2021;298(2):E70–E80. Link, Google Scholar26. Han X, Fan Y, Alwalid O, et al. Six-month Follow-up Chest CT Findings after Severe COVID-19 Pneumonia. Radiology 2021;299(1):E177–E186. Link, Google Scholar27. Pan F, Yang L, Liang B, et al. Chest CT Patterns from Diagnosis to 1 Year of Follow-up in Patients with COVID-19. Radiology 2022;302(3):709–719. Link, Google Scholar28. Franquet T. Imaging of pulmonary viral pneumonia. Radiology 2011;260(1):18–39. Link, Google Scholar29. Ohno Y, Seo JB, Parraga G, et al. Pulmonary Functional Imaging: Part 1-State-of-the-Art Technical and Physiologic Underpinnings. Radiology 2021;299(3):508–523. Link, Google Scholar30. Gefter WB, Lee KS, Schiebler ML, et al. Pulmonary Functional Imaging: Part 2-State-of-the-Art Clinical Applications and Opportunities for Improved Patient Care. Radiology 2021;299(3):524–538. Link, Google Scholar31. Hatabu H, Ohno Y, Gefter WB, et alFleischner Society. Expanding Applications of Pulmonary MRI in the Clinical Evaluation of Lung Disorders: Fleischner Society Position Paper. Radiology 2020;297(2):286–301. Link, Google Scholar32. Matheson AM, McIntosh MJ, Kooner HK, et al. Persistent 129Xe MRI Pulmonary and CT Vascular Abnormalities in Symptomatic Individuals with Post-acute COVID-19 Syndrome. Radiology 2022;305(2):466–476. Link, Google Scholar33. Mistretta CA, Crummy AB, Strother CM. Digital angiography: a perspective. Radiology 1981;139(2):273–276. Link, Google Scholar34. Gu T, Korosec FR, Block WF, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. AJNR Am J Neuroradiol 2005;26(4):743–749. Medline, Google Scholar35. Mistretta CA. Breaking Angiographic Speed Limits: Accelerated 4D MRA and 4D DSA Using Undersampled Acquisition and Constrained Reconstruction. Lecture presented at: 2012 RSNA Annual Meeting; November 29, 2012; Chicago, IL. Google Scholar36. Pickhardt PJ. Value-added Opportunistic CT Screening: State of the Art. Radiology 2022;303(2):241–254. Link, Google Scholar37. McLoud T. Thoracic Radiology: Recent Developments and Future Trends. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.223121. Published online January 17, 2023. Google Scholar38. Yoon SH, Lee JH, Koh J, et al. An Integrated Radiologic–Pathologic Understanding of COVID-19 Pneumonia. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222600. Published online January 17, 2023. Google Scholar39. Lee KS, Jeong YJ, Wi YM, et al. Current and Emerging Knowledge in COVID-19. Radiology 2023. https://pubs.rsna.org/doi/10.1148/radiol.222462. Published online January 10, 2023. Google Scholar40. Hansell DM, Bankier AA, MacMahon H, et al. Fleischner Society: glossary of terms for thoracic imaging. Radiology 2008;246(3):697–722. Link, Google Scholar41. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology 2020;295(3):685–691. Link, Google Scholar42. MacMahon H, Austin JH, Gamsu G, et al. Guidelines for management of small pulmonary nodules detected on CT scans: a statement from the Fleischner Society. Radiology 2005;237(2):395–400. Link, Google Scholar43. Xie X, Zhong Z, Zhao W, et al. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR testing. Radiology 2020;296(2):E41–E45. Link, Google ScholarArticle HistoryReceived: Oct 3 2022Revision requested: Oct 12 2022Revision received: Oct 13 2022Accepted: Oct 20 2022Published online: Jan 10 2023 FiguresReferencesRelatedDetailsCited ByThoracic Radiology: Recent Developments and Future TrendsTheresa C. McLoud, Brent P. Little, 17 January 2023 | Radiology, Vol. 306, No. 2Recommended Articles RSNA Education Exhibits RSNA Case Collection Vol. 306, No. 2 Metrics Altmetric Score PDF download
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
XeNon完成签到,获得积分10
1秒前
2秒前
3秒前
FashionBoy应助猪猪hero采纳,获得10
3秒前
3秒前
Allen0520发布了新的文献求助30
4秒前
zhh完成签到,获得积分0
6秒前
AAA论文求过完成签到 ,获得积分10
6秒前
XeNon发布了新的文献求助10
7秒前
MMM完成签到 ,获得积分10
8秒前
8秒前
深情的嘉熙完成签到,获得积分10
8秒前
zhh发布了新的文献求助30
9秒前
10秒前
慕青应助陈JY采纳,获得10
10秒前
善学以致用应助摸俞采纳,获得10
11秒前
mucheng发布了新的文献求助10
11秒前
13秒前
Orange应助zac采纳,获得10
13秒前
aaiirrii发布了新的文献求助10
16秒前
猪猪hero发布了新的文献求助10
16秒前
18秒前
yznfly应助博修采纳,获得30
18秒前
22秒前
23秒前
23秒前
hahamissyu应助ggg采纳,获得20
24秒前
Orange应助实验室在逃公猪采纳,获得10
29秒前
安之于数发布了新的文献求助10
29秒前
30秒前
Cynn完成签到,获得积分10
33秒前
CipherSage应助欢呼的冰蝶采纳,获得10
34秒前
共享精神应助默默洋葱采纳,获得10
34秒前
细水长流完成签到 ,获得积分10
35秒前
Cynn发布了新的文献求助30
36秒前
37秒前
41秒前
英姑应助加菲丰丰采纳,获得100
42秒前
芥丶子完成签到,获得积分10
42秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903699
求助须知:如何正确求助?哪些是违规求助? 3448561
关于积分的说明 10853462
捐赠科研通 3173979
什么是DOI,文献DOI怎么找? 1753682
邀请新用户注册赠送积分活动 847858
科研通“疑难数据库(出版商)”最低求助积分说明 790486