亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fusing Machine Learning and AI to Create a Framework for Employee Well-Being in the Era of Industry 5.0

分析 计算机科学 构造(python库) 背景(考古学) F1得分 可穿戴计算机 数据科学 知识管理 人工智能 生物 嵌入式系统 古生物学 程序设计语言
作者
Cosmina-Mihaela Roșca,Adrian Stancu
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (23): 10835-10835 被引量:15
标识
DOI:10.3390/app142310835
摘要

Employees are the most valuable resources in any company, and their well-being directly influences work productivity. This research investigates integrating health parameters and sentiment analysis expressed in sent messages to enhance employee well-being within organizations in the context of Industry 5.0. Our primary aim is to develop a Well-Being Index (WBI) that quantifies employee health through various physiological and psychological parameters. A new methodology combining data collection from wearable devices from 1 January 2023 to 18 October 2024 and advanced text analytics was employed to achieve the WBI. This study uses the LbfgsMaximumEntropy ML classification algorithm to construct the Well-Being Model (WBM) and Azure Text Analytics for sentiment evaluation to assess negative messages among employees. The findings reveal a correlation between physiological metrics and self-reported well-being, highlighting the utility of the WBI in identifying areas of concern within employee behavior. We propose that the employee global indicator (EGI) is calculated based on the WBI and the dissatisfaction score component (DSC) to measure the overall state of mind of employees. The WBM exhibited a MacroAccuracy of 91.81% and a MicroAccuracy of 95.95% after 384 configurations were analyzed. Azure Text Analytics evaluated 2000 text messages, resulting in a Precision of 99.59% and an Accuracy of 99.7%. In this case, the Recall was 99.89% and F1-score was 99.73%. In the Industry 5.0 environment, which focuses on the employee, a new protocol, the Employee KPI Algorithm (EKA), is integrated to prevent and identify employee stress. This study underscores the synergy between quantitative health metrics and qualitative sentiment analysis, offering organizations a framework to address employee needs proactively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
17秒前
Demi_Ming完成签到,获得积分10
28秒前
29秒前
漂亮夏兰完成签到 ,获得积分10
44秒前
44秒前
48秒前
49秒前
celi发布了新的文献求助10
51秒前
孙嘉遇完成签到,获得积分20
59秒前
花城诚成完成签到,获得积分10
1分钟前
花城诚成发布了新的文献求助60
1分钟前
星辰大海应助Yyyyyyyyy采纳,获得10
1分钟前
kuoping完成签到,获得积分0
1分钟前
大模型应助小白果果采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
YY完成签到,获得积分10
1分钟前
小白果果发布了新的文献求助30
1分钟前
哭泣灯泡完成签到,获得积分10
1分钟前
哈哈嘿完成签到,获得积分10
1分钟前
桐桐应助小白果果采纳,获得30
2分钟前
事上炼应助哈哈嘿采纳,获得20
2分钟前
2分钟前
2分钟前
小白果果发布了新的文献求助30
2分钟前
2分钟前
化鼠发布了新的文献求助10
2分钟前
化鼠完成签到,获得积分10
2分钟前
2分钟前
3分钟前
华仔应助scl采纳,获得10
3分钟前
fishss完成签到 ,获得积分0
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
3分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
Expectations: Teaching Writing from the Reader's Perspective 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5503098
求助须知:如何正确求助?哪些是违规求助? 4598676
关于积分的说明 14464761
捐赠科研通 4532387
什么是DOI,文献DOI怎么找? 2483917
邀请新用户注册赠送积分活动 1467136
关于科研通互助平台的介绍 1439866