3D anatomical digital twins: New generation virtual models to navigate robotic partial nephrectomy

肾切除术 计算机科学 人工智能 人机交互 医学 内科学
作者
Daniele Amparore,Alberto Piana,Federico Piramide,Sabrina De Cillis,Enrico Checcucci,Cristian Fiori,Francesco Porpiglia
出处
期刊:BJUI compass [Wiley]
卷期号:6 (3) 被引量:4
标识
DOI:10.1002/bco2.453
摘要

Abstract Objective 3D virtual models have gained interest in urology, particularly in the context of robotic partial nephrectomy. From these, newly developed “anatomical digital twin models” reproduce both the morphological and anatomical characteristics of the organs, including the texture of the tissues they comprise. The aim of the study was to develop and test the new digital twins in the setting of intraoperative guidance during robotic‐assisted partial nephrectomy (RAPN). Patient and Methods The production path of the 3D model‐digital twin of an organ begins with a phantom of virtual elements, including the kidney's parenchyma, vessels, tumour and collecting system. Textures are created from intraoperative robotic surgery images using machine learning algorithms. The result is a 3D model ‐ digital twin that replicates the organ's shape and appearance. Two surgeons, one experienced and one young, used both the standard 3D model and the digital twin in four surgical phases: identifying the organ and its boundaries, dissecting the vascular pedicle, isolating the neoplastic lesion and identifying the renal pelvis and ureter. Results 4 patients, 2 per each surgeon harbouring a low and intermediate complexity (PADUA 6 and 8) renal masses respectively, underwent RAPN. From the assessment made by the surgeons at the end of each procedure, the 3D digital twin models were found to be superior to their standard counterparts both in terms of concordance with real anatomy and in usefulness to guide the identification of the tumour, vascular pedicle and ureter, while they did not demonstrate significant advantages in identifying the kidney and its margins. Conclusions The new 3D digital twin models represent a step forward towards the personalization of virtual reconstructions. Approaching real anatomy more closely, they offer the surgeons a perceived higher degree of concordance with the intraoperative environment, making it easier to identify the structures of interest during the surgical procedure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助苏獭采纳,获得10
刚刚
晴天完成签到,获得积分10
1秒前
Raphael Zhang发布了新的文献求助10
1秒前
闵不悔完成签到,获得积分10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
yukaka应助Leon采纳,获得10
3秒前
蓝色旺仔应助Leon采纳,获得10
3秒前
4秒前
4秒前
Daisy发布了新的文献求助10
4秒前
pancake发布了新的文献求助10
5秒前
春风完成签到,获得积分10
5秒前
朱大帅发布了新的文献求助10
5秒前
研友_VZG7GZ应助睿力采纳,获得10
6秒前
6秒前
7秒前
8秒前
wanghuan驳回了Dean应助
8秒前
9秒前
9秒前
小吉利发布了新的文献求助10
10秒前
BINGBING1230发布了新的文献求助10
10秒前
10秒前
Orange应助史双龙采纳,获得10
10秒前
11秒前
yanghao发布了新的文献求助10
11秒前
11秒前
CipherSage应助tang采纳,获得10
12秒前
科研通AI6应助小欣采纳,获得10
12秒前
wqa1472完成签到,获得积分10
12秒前
Daisy完成签到,获得积分10
13秒前
苏獭发布了新的文献求助10
13秒前
活泼凡阳发布了新的文献求助10
13秒前
13秒前
是小王ya发布了新的文献求助10
14秒前
科研通AI6应助corazon采纳,获得10
14秒前
xiaobai发布了新的文献求助10
14秒前
ttyip发布了新的文献求助10
15秒前
xiaomeng发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5114025
求助须知:如何正确求助?哪些是违规求助? 4321395
关于积分的说明 13465486
捐赠科研通 4152972
什么是DOI,文献DOI怎么找? 2275529
邀请新用户注册赠送积分活动 1277527
关于科研通互助平台的介绍 1215519