清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Examining tropical cyclone thermodynamic structure with TROPICS observations

热带气旋 热带 气候学 环境科学 热带气旋发生 热带气旋尺度 热带气旋降雨预报 气象学 大气科学 Cyclone(编程语言) 地质学 地理 现场可编程门阵列 渔业 计算机科学 计算机硬件 生物
作者
Erin B. Munsell,Scott A. Braun,Tom Greenwald,Ralf Bennartz,William J. Blackwell
出处
期刊:Monthly Weather Review [American Meteorological Society]
标识
DOI:10.1175/mwr-d-23-0191.1
摘要

Abstract This study examines the three-dimensional thermodynamic structure of a rapidly intensifying tropical cyclone (TC) through the utilization of synthetic retrievals based off of the specifications of NASA’s Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission. Proxy TROPICS vertical profiles of temperature and water vapor mixing ratio generated from the Hurricane Nature Run (HNR1; Nolan et al. 2013) are utilized to analyze the TC structure over a 10-day period that includes the HNR1 TC’s rapid intensification (RI) from a tropical storm to a major hurricane. Analyses are performed to assess how accurately TROPICS may be able to determine thermodynamic profiles both within the storm and in the environment by validating against the HNR1 model data. It is found that the TROPICS retrievals compare favorably with the HNR1 data at most heights and times with errors consistently less than the proposed mission requirements (2 K for temperature; 25% for humidity). In addition, the retrievals show the ability to qualitatively track extensive dry air that is present in the vicinity of the TC. Although a substantial dry bias is present within the storm region of the TC (between 0 – 200 km from the surface center) in the 350–550 mb layer in the TROPICS retrievals, this bias is reduced when the retrievals associated with precipitating grid points are removed from the analyses. However, despite this filtering, a significant bias remains, which suggests that the TROPICS retrievals will likely lose accuracy in regions of stronger scattering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
猪宝大王发布了新的文献求助10
8秒前
woxinyouyou完成签到,获得积分0
14秒前
这学真难读下去完成签到,获得积分10
34秒前
紫熊完成签到,获得积分10
37秒前
猪宝大王完成签到,获得积分10
53秒前
1分钟前
1分钟前
优雅山柏发布了新的文献求助10
1分钟前
2分钟前
所所应助科研通管家采纳,获得10
2分钟前
2分钟前
zxclax发布了新的文献求助30
2分钟前
科研通AI2S应助dlm采纳,获得10
2分钟前
zxclax完成签到,获得积分10
2分钟前
2分钟前
稻子完成签到 ,获得积分10
3分钟前
dlm发布了新的文献求助10
3分钟前
fangyifang完成签到,获得积分10
3分钟前
英姑应助dlm采纳,获得10
3分钟前
kmzzy完成签到,获得积分10
3分钟前
3分钟前
dlm发布了新的文献求助10
3分钟前
vbnn完成签到 ,获得积分10
4分钟前
个性归尘应助科研通管家采纳,获得30
4分钟前
慕青应助连安阳采纳,获得10
4分钟前
4分钟前
4分钟前
连安阳发布了新的文献求助10
4分钟前
连安阳完成签到,获得积分10
5分钟前
allrubbish完成签到,获得积分10
5分钟前
6分钟前
wanci应助科研通管家采纳,获得10
6分钟前
杪夏二八完成签到 ,获得积分10
6分钟前
蚂蚁踢大象完成签到 ,获得积分10
6分钟前
KINGAZX完成签到 ,获得积分10
6分钟前
6分钟前
似水流年完成签到 ,获得积分10
7分钟前
轻松小张完成签到,获得积分10
7分钟前
Ms_Galaxea完成签到,获得积分10
8分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
Minimum Bar Spacing as a Function of Bond and Shear Strength 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837511
求助须知:如何正确求助?哪些是违规求助? 3379609
关于积分的说明 10509981
捐赠科研通 3099208
什么是DOI,文献DOI怎么找? 1707000
邀请新用户注册赠送积分活动 821348
科研通“疑难数据库(出版商)”最低求助积分说明 772597