Improving Generalizability of Drug-Target Binding Prediction by Pre-trained Multi-view Molecular Representations

概化理论 计算机科学 药物靶点 药品 人工智能 机器学习 计算生物学 化学 药理学 统计 数学 医学 生物化学 生物
作者
Xike Ouyang,Y. X. Feng,Chen Cui,Yunhe Li,Li Zhang,Han Wang
出处
期刊:Bioinformatics [Oxford University Press]
标识
DOI:10.1093/bioinformatics/btaf002
摘要

Abstract Motivation Most drugs start on their journey inside the body by binding the right target proteins. This is the reason that numerous efforts have been devoted to predicting the drug-target binding during drug development. However, the inherent diversity among molecular properties, coupled with limited training data availability, poses challenges to the accuracy and generalizability of these methods beyond their training domain. Results In this work, we proposed a neural networks construction for high accurate and generalizable drug-target binding prediction, named Pre-trained Multi-view Molecular Representations (PMMR). The method uses pre-trained models to transfer representations of target proteins and drugs to the domain of drug-target binding prediction, mitigating the issue of poor generalizability stemming from limited data. Then, two typical representations of drug molecules, Graphs and SMILES strings, are learned respectively by a Graph Neural Network (GNN) and a Transformer to achieve complementarity between local and global features. PMMR was evaluated on drug-target affinity and interaction benchmark datasets, and it derived preponderant performance contrast to peer methods, especially generalizability in cold-start scenarios. Furthermore, our state-of-the-art method was indicated to have the potential for drug discovery by a case study of cyclin-dependent kinase 2 (CDK2). Availability and implementation https://github.com/NENUBioCompute/PMMR. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
刚刚
xunlei发布了新的文献求助10
刚刚
科目三应助肉脸小鱼采纳,获得10
1秒前
jianglili发布了新的文献求助10
1秒前
Hello应助小小小新采纳,获得10
2秒前
14发布了新的文献求助10
3秒前
4秒前
6秒前
6秒前
7秒前
绝尘发布了新的文献求助10
8秒前
8秒前
strug783完成签到,获得积分10
10秒前
踏雪飞鸿发布了新的文献求助10
10秒前
隐形小小发布了新的文献求助10
11秒前
wenfeisun发布了新的文献求助10
13秒前
科研通AI5应助14采纳,获得10
14秒前
Layli完成签到,获得积分10
15秒前
15秒前
诺奇发布了新的文献求助10
15秒前
所所应助绝尘采纳,获得10
19秒前
under完成签到,获得积分10
19秒前
20秒前
羽羽发布了新的文献求助10
22秒前
AKACrown完成签到,获得积分10
22秒前
24秒前
汉堡包应助wangchaofk采纳,获得10
26秒前
慕青应助菜虚鲲采纳,获得10
27秒前
qiaoyun发布了新的文献求助10
28秒前
科研通AI5应助bbing采纳,获得10
30秒前
30秒前
31秒前
学学术术小小白白完成签到,获得积分10
31秒前
852应助六十一采纳,获得10
33秒前
33秒前
NexusExplorer应助52pry采纳,获得10
34秒前
孙文远完成签到,获得积分10
36秒前
深情安青应助左岸采纳,获得10
36秒前
36秒前
小二郎应助lemon采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780270
求助须知:如何正确求助?哪些是违规求助? 3325566
关于积分的说明 10223524
捐赠科研通 3040706
什么是DOI,文献DOI怎么找? 1668974
邀请新用户注册赠送积分活动 798936
科研通“疑难数据库(出版商)”最低求助积分说明 758634