Auto-Pairing Positives through Implicit Relation Circulation for Discriminative Self-Learning

判别式 计算机科学 人工智能 特征学习 机器学习 模式识别(心理学) 自然语言处理 理论计算机科学
作者
Bo Pang,Zhenyu Wei,Jingli Lin,Cewu Lu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-15 被引量:1
标识
DOI:10.1109/tpami.2025.3526802
摘要

Contrastive learning, a discriminative self-learning framework, is one of the most popular representation learning methods which has a wide range of application scenarios. Although relative techniques have been continuously updated in recent years, designing and seeking positive pairs are still inevitable. Just because of the requirement of explicit positive pairs, the utilization of contrastive learning is restricted in dense, multi-modal, and other scenarios where positive pairs are difficult to obtain. To solve this problem, in this paper, we design an auto-pairing mechanism called Implicit Relation Circulation (IRC) for discriminative self-learning frameworks. Its core idea is to conduct a random walk among multiple feature groups we want to contrast but without explicit matchup, which we call the complex task (Task C). By linking the head and tail of the random walk to form a circulation with a simple task (task S) containing easy-obtaining pairs, we can apply cycle consistency as supervision guidance to gradually learn the wanted positive pairs among the random walk of feature groups automatically. We provide several amazing applications of IRC: we can learn 1) effective dense image pixel relations and representation with only image-level pairs; 2) 3D temporal point-level multi-modal point cloud relations and representation; 3) even image representation with the help of language without off-the-shelf vision-language pairs. As an easy-to-use plug-and-play mechanism, we evaluate its universality and robustness with multiple self-learning algorithms, tasks, and datasets, achieving stable and significant improvements. As an illustrative example, IRC improves the SOTA performance by about 3.0 mIoU on image semantic segmentation, 1.5 mIoU on 3D segmentation, 1.3 mAP on 3D detection, and an average of 1.2 top1 accuracy on image classification with the help of the auto-learned positive pairs. Importantly, these improvements are achieved with little parameter and computation overhead. We hope IRC can provide the community with new insight into discriminative self-learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hlq完成签到 ,获得积分10
4秒前
Lyw完成签到 ,获得积分10
8秒前
徐梦曦完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
隐形的烧鹅完成签到,获得积分20
13秒前
香蕉觅云应助leo采纳,获得10
16秒前
hhh发布了新的文献求助20
18秒前
chentong0完成签到 ,获得积分10
18秒前
韧迹完成签到 ,获得积分0
19秒前
烟花应助隐形的烧鹅采纳,获得10
19秒前
壹z完成签到 ,获得积分10
20秒前
26秒前
Kkkk完成签到 ,获得积分10
31秒前
laoxie301发布了新的文献求助20
31秒前
含光完成签到,获得积分10
35秒前
踏实谷蓝完成签到 ,获得积分10
39秒前
激动的xx完成签到 ,获得积分10
40秒前
lige完成签到 ,获得积分10
42秒前
搜集达人应助laoxie301采纳,获得20
43秒前
tion66完成签到 ,获得积分10
44秒前
lqm完成签到,获得积分10
48秒前
qyzhu完成签到,获得积分10
48秒前
49秒前
王聪冲冲冲完成签到 ,获得积分10
50秒前
南风完成签到,获得积分10
57秒前
affff完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夏阳完成签到 ,获得积分10
1分钟前
小静完成签到 ,获得积分10
1分钟前
mzrrong完成签到 ,获得积分10
1分钟前
深情幻嫣发布了新的文献求助10
1分钟前
火星上芹菜完成签到,获得积分10
1分钟前
1分钟前
曙光完成签到,获得积分10
1分钟前
jinjing完成签到,获得积分10
1分钟前
8D完成签到,获得积分10
1分钟前
puritan完成签到 ,获得积分10
1分钟前
ding应助武雨寒采纳,获得10
1分钟前
蝈蝈完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079590
求助须知:如何正确求助?哪些是违规求助? 4297814
关于积分的说明 13388819
捐赠科研通 4121011
什么是DOI,文献DOI怎么找? 2256989
邀请新用户注册赠送积分活动 1261228
关于科研通互助平台的介绍 1195296