清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Enhanced identification of equipment failures from descriptive accident reports using language generative model

鉴定(生物学) 范畴变量 计算机科学 叙述的 风险分析(工程) 数据科学 机器学习 医学 语言学 植物 生物 哲学
作者
U. Ray,Cristian Arteaga,Yonghan Ahn,JeeWoong Park
出处
期刊:Engineering, Construction and Architectural Management [Emerald Publishing Limited]
被引量:5
标识
DOI:10.1108/ecam-09-2024-1259
摘要

Purpose Equipment failure is a critical factor in construction accidents, often leading to severe consequences. Therefore, this study addresses two significant gaps in construction safety research: (1) effectively using historical data to investigate equipment failure and (2) understanding the classification of equipment failure according to Occupational Safety and Health Administration (OSHA) standards. Design/methodology/approach Our research utilized a multi-stage methodology. We curated data from the OSHA database, distinguishing accidents involving equipment failures. Then we developed a framework using generative artificial intelligence (AI) and large language models (LLMs) to minimize manual processing. This framework employed a two-step prompting strategy: (1) classifying narratives that describe equipment failures and (2) analyzing these cases to extract specific failure details (e.g. names, types, categories). To ensure accuracy, we conducted a manual analysis of a subset of reports to establish ground truth and tested two different LLMs within our approach, comparing their performance against this ground truth. Findings The tested LLMs demonstrated 95% accuracy in determining if narratives describe equipment failures and 73% accuracy in extracting equipment names, enabling automated categorical identifications. These findings highlight LLMs’ promising identification accuracy compared to manual methods. Research limitations/implications The research’s focus on equipment data not only validates the research framework but also highlights its potential for broader application across various accident categories beyond construction, extending into any domain with accessible accident narratives. Given that such data are essential for regulatory bodies like OSHA, the framework’s adoption could significantly enhance safety analysis and reporting, contributing to more robust safety protocols industry-wide. Practical implications Using the developed approach, the research enables us to use accident narratives, a reliable source of accident data, in accident analysis. It provides deeper insights than traditional data types, enabling a more detailed understanding of accidents at an unprecedented level. This enhanced understanding can significantly inform and improve worker safety training, education and safety policies, with the potential for broader applications across various safety-critical domains. Originality/value This research presents a novel approach to analyzing construction accident reports using AI and LLMs, significantly reducing manual processing time while maintaining high accuracy. By identifying equipment failures more efficiently, our work lays the groundwork for developing targeted safety protocols, contributing to overall safety improvements in construction practices and advancing data-driven analysis processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唐泽雪穗应助科研通管家采纳,获得10
刚刚
李爱国应助科研通管家采纳,获得10
1秒前
唐泽雪穗应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
沐沐心完成签到 ,获得积分10
3秒前
阆苑仙葩完成签到 ,获得积分10
16秒前
糟糕的翅膀完成签到,获得积分10
18秒前
如意2023完成签到 ,获得积分10
31秒前
32秒前
37秒前
menghongmei完成签到 ,获得积分10
42秒前
Heart_of_Stone完成签到 ,获得积分10
50秒前
coolplex完成签到 ,获得积分10
57秒前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助150
1分钟前
zyb完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
汪汪淬冰冰完成签到,获得积分10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
磨玉完成签到 ,获得积分10
1分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
唐泽雪穗应助科研通管家采纳,获得10
2分钟前
nano完成签到 ,获得积分10
2分钟前
h41692011完成签到 ,获得积分10
2分钟前
健壮可冥完成签到 ,获得积分10
2分钟前
orixero应助油麦采纳,获得10
2分钟前
天行健完成签到,获得积分10
2分钟前
隐形曼青应助大大的呢采纳,获得10
2分钟前
2分钟前
Hzhe完成签到,获得积分10
2分钟前
油麦发布了新的文献求助10
2分钟前
万能图书馆应助半夏采纳,获得10
2分钟前
浚稚完成签到 ,获得积分10
2分钟前
3分钟前
Yy完成签到 ,获得积分10
3分钟前
大大的呢发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5066280
求助须知:如何正确求助?哪些是违规求助? 4288501
关于积分的说明 13360039
捐赠科研通 4107585
什么是DOI,文献DOI怎么找? 2249306
邀请新用户注册赠送积分活动 1254773
关于科研通互助平台的介绍 1186907