亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Artificial intelligence-enhanced MRI-based preoperative staging in patients with endometrial cancer

医学 子宫内膜癌 放射科 肿瘤科 普通外科 癌症 内科学
作者
Lise Lecointre,Julia Alekseenko,Matteo Pavone,Alexandros Karargyris,Francesco Fanfani,Anna Fagotti,Giovanni Scambia,Denis Querleu,Chérif Akladios,Jérémy Dana,Nicolas Padoy
出处
期刊:International Journal of Gynecological Cancer [BMJ]
卷期号:35 (1): 100017-100017
标识
DOI:10.1016/j.ijgc.2024.100017
摘要

Evaluation of prognostic factors is crucial in patients with endometrial cancer for optimal treatment planning and prognosis assessment. This study proposes a deep learning pipeline for tumor and uterus segmentation from magnetic resonance imaging (MRI) images to predict deep myometrial invasion and cervical stroma invasion and thus assist clinicians in pre-operative workups. Two experts consensually reviewed the MRIs and assessed myometrial invasion and cervical stromal invasion as per the International Federation of Gynecology and Obstetrics staging classification, to compare the diagnostic performance of the model with the radiologic consensus. The deep learning method was trained using sagittal T2-weighted images from 142 patients and tested with a 3-fold stratified test with 36 patients in each fold. Our solution is based on a segmentation module, which employed a 2-stage pipeline for efficient uterus in the whole MRI volume and then tumor segmentation in the uterus predicted region of interest. A total of 178 patients were included. For deep myometrial invasion prediction, the model achieved an average balanced test accuracy over 3-folds of 0.702, while experts reached an average accuracy of 0.769. For cervical stroma invasion prediction, our model demonstrated an average balanced accuracy of 0.721 on the 3-fold test set, while experts achieved an average balanced accuracy of 0.859. Additionally, the accuracy rates for uterus and tumor segmentation, measured by the Dice score, were 0.847 and 0.579 respectively. Despite the current challenges posed by variations in data, class imbalance, and the presence of artifacts, our fully automatic approach holds great promise in supporting in pre-operative staging. Moreover, it demonstrated a robust capability to segment key regions of interest, specifically the uterus and tumors, highlighting the positive impact our solution can bring to health care imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的访烟完成签到,获得积分10
4秒前
可爱龟背竹完成签到,获得积分20
31秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
莫友安完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
轻松的采柳完成签到 ,获得积分10
2分钟前
3分钟前
思源应助科研通管家采纳,获得10
3分钟前
共享精神应助科研通管家采纳,获得10
3分钟前
偶吼吼完成签到,获得积分10
3分钟前
4分钟前
ZHErain发布了新的文献求助10
4分钟前
4分钟前
4分钟前
5分钟前
Jasper应助科研通管家采纳,获得30
5分钟前
英俊的铭应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
传奇3应助yyy采纳,获得10
5分钟前
5分钟前
Eric800824完成签到 ,获得积分10
6分钟前
yyy发布了新的文献求助10
6分钟前
KING完成签到,获得积分10
6分钟前
激动的似狮完成签到,获得积分10
7分钟前
7分钟前
ZHErain完成签到,获得积分20
7分钟前
7分钟前
悦耳亦云完成签到 ,获得积分10
7分钟前
7分钟前
白晔完成签到,获得积分10
8分钟前
8分钟前
8分钟前
小段完成签到,获得积分10
8分钟前
8分钟前
8分钟前
8分钟前
TvT发布了新的文献求助10
9分钟前
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795553
求助须知:如何正确求助?哪些是违规求助? 3340578
关于积分的说明 10300696
捐赠科研通 3057121
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529