亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomics Harmonization in Ultrasound Images for Cervical Cancer Lymph Node Metastasis Prediction Using Cycle-GAN

无线电技术 成像体模 人工智能 计算机科学 医学 特征(语言学) 图像质量 模式识别(心理学) 放射科 图像(数学) 语言学 哲学
作者
Zeshuo Zhao,Yuning Qin,Kai Shao,Yapeng Liu,Yangyang Zhang,Heng Li,Wenlong Li,Jiayi Xu,Jicheng Zhang,Boda Ning,Xianwen Yu,Xiance Jin,Juebin Jin
出处
期刊:Technology in Cancer Research & Treatment [SAGE Publishing]
卷期号:23 被引量:2
标识
DOI:10.1177/15330338241302237
摘要

Background: Ultrasound (US) based radiomics is susceptible to variations in scanners, sonographers. Objective: To retrospectively investigate the feasibility of an adapted cycle generative adversarial networks (CycleGAN) in the style transfer to improve US based radiomics in the prediction of lymph node metastasis (LNM) with images from multiple scanners for patients with early cervical cancer (ECC). Methods: The CycleGAN was firstly trained to transfer paired US phantom images from one US device to another one; the model was then further trained and tested with clinical US images of ECC by transferring images from four US devices to one specific device; finally, the adapted model was tested with its effects on the radiomics feature harmonization and accuracy of LNM prediction in US based radiomics for ECC patients. Results: Phantom study demonstrated an increased radiomics harmonization using CycleGAN with an average Pearson correlation coefficient of 0.60 and 0.81 for radiomics features extracted from original and generated images in correlation with the target phantom images, respectively. Additionally, the image quality metric Peak Signal-to-Noise Ratio (PSNR) was increased from 11.18 for the original images to 15.45 for the generated image. Clinical US images of 169 ECC patients were enrolled for style transfer model training and validation. The area under curve (AUC) of LNM prediction radiomics models with features extracted from generated images of different style transfer models ranged from 0.73 to 0.85. The AUC was improved from 0.78 with features extracted from original images to 0.85 with style transferred images. Conclusions: The adapted CycleGAN network is able to increase the radiomics feature harmonization for images from different ultrasound equipment based on image domain and improve the LNM prediction accuracy for ECC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
7秒前
搜集达人应助科研通管家采纳,获得10
25秒前
Jasper应助科研通管家采纳,获得10
25秒前
共享精神应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得50
25秒前
25秒前
orixero应助leanne采纳,获得10
29秒前
31秒前
41秒前
leanne发布了新的文献求助10
48秒前
LMY完成签到 ,获得积分10
1分钟前
1分钟前
CipherSage应助小兔子采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
培培完成签到 ,获得积分10
1分钟前
1分钟前
小兔子发布了新的文献求助30
1分钟前
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
爆米花应助舒服的觅夏采纳,获得10
2分钟前
1yyyyyy完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
HE完成签到,获得积分20
2分钟前
2分钟前
HE发布了新的文献求助10
3分钟前
3分钟前
3分钟前
fxx完成签到,获得积分10
3分钟前
1yyyyyy发布了新的文献求助10
3分钟前
3分钟前
希望天下0贩的0应助fxx采纳,获得10
3分钟前
yuanjunhu发布了新的文献求助20
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
丘比特应助科研通管家采纳,获得10
4分钟前
Lucas应助科研通管家采纳,获得10
4分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
変形菌ミクソヴァース 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4256087
求助须知:如何正确求助?哪些是违规求助? 3788715
关于积分的说明 11888783
捐赠科研通 3438362
什么是DOI,文献DOI怎么找? 1886902
邀请新用户注册赠送积分活动 938071
科研通“疑难数据库(出版商)”最低求助积分说明 843711