杂原子
法拉第效率
电子结构
催化作用
电化学
密度泛函理论
材料科学
价(化学)
Atom(片上系统)
金属
价电子
纳米技术
结晶学
电子
化学
计算化学
物理化学
电极
物理
计算机科学
嵌入式系统
有机化学
量子力学
冶金
生物化学
戒指(化学)
作者
Yang Chen,Xiaoli Pan,Lin Li,Meixin Chen,Hongchen Cao,Yang Zhao,Xiaodong Wang,Jian Lin
出处
期刊:Small
[Wiley]
日期:2025-01-24
标识
DOI:10.1002/smll.202411249
摘要
Abstract Single‐atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni 1 ‐NC SACs by introducing electron‐rich phosphorus or electron‐deficient boron for electrochemical CO 2 reduction (CO 2 RR) is systematically tailored. It is found that the Ni 1 ‐PNC with Ni 1 ‐N 3 P site exhibits superior performance with a current density of 14.6 mA cm −2 and a Faradaic efficiency of 90.6% at −0.8 V versus RHE for CO production, far exceeding Ni 1 ‐NC and Ni 1 ‐BNC SACs. Detailed characterizations and theoretical calculations reveal a linear relationship between the valence state of Ni species and the CO 2 RR performance. The incorporation of P species facilitates the electronic localization around the Ni 1 center, significantly promoting the adsorption of CO 2 and the formation of key *COOH intermediate to enhance CO 2 RR. This work provides a feasible approach to quantitatively manipulate the electronic structure of single‐atom metal sites and to rationally design highly efficient catalysts for boosted performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI