Vegetation Types Shift Physiological and Phenological Controls on Carbon Sink Strength in a Coastal Zone

湿地 环境科学 碳汇 水槽(地理) 生态系统 涡度相关法 气候变化 植被(病理学) 碳循环 水文学(农业) 植被类型 物候学 大气科学 气候学 自然地理学 生态学 海洋学 地质学 地理 草原 医学 地图学 病理 生物 岩土工程
作者
Siyu Wei,Adina Paytan,Xiaojing Chu,Xiaoshuai Zhang,Weimin Song,Xiaojie Wang,Peiguang Li,Guangxuan Han
出处
期刊:Global Change Biology [Wiley]
卷期号:31 (1) 被引量:2
标识
DOI:10.1111/gcb.70029
摘要

ABSTRACT The carbon sink function performed by the different vegetation types along the environmental gradient in coastal zones plays a vital role in mitigating climate change. However, inadequate understanding of its spatiotemporal variations across different vegetation types and associated regulatory mechanisms hampers determining its potential shifts in a changing climate. Here, we present long‐term (2011–2022) eddy covariance measurements of the net ecosystem exchange (NEE) of CO 2 at three sites with different vegetation types (tidal wetland, nontidal wetland, and cropland) in a coastal zone to examine the role of vegetation type on annual carbon sink strength. We found that the three study sites are stable carbon sinks and are influenced by their distinct physiological and phenological factors. The annual NEE of the tidal wetland, nontidal wetland, and cropland were determined predominantly by the seasonal peaks of net CO 2 uptake, release, and duration of CO 2 uptake period. Furthermore, the changes in annual NEE were sensitive to climatic variables, as spring mean air temperature reduced the carbon sink strength in the tidal wetland, maximum daily precipitation in summer reduced it in the nontidal wetland, and summer mean global radiation elicited the same effect in the cropland. Finally, a worldwide database of the three vegetation types was compiled, using which we further validated the global consistency of the biological controls. Overall, these results emphasize the importance of considering the underlying mechanisms by which vegetation types influence NEE for the accurate forecasting of carbon sink dynamics across different coastal vegetation types under climate change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hehe完成签到,获得积分10
1秒前
GG小丁同学完成签到,获得积分10
1秒前
rita完成签到,获得积分10
1秒前
娃haha完成签到,获得积分10
2秒前
爆米花应助qwe1108采纳,获得10
2秒前
LZ完成签到,获得积分10
2秒前
3秒前
原电池完成签到,获得积分10
3秒前
yuyu完成签到,获得积分10
3秒前
yidashi完成签到,获得积分10
4秒前
天行马完成签到,获得积分10
4秒前
帅气的秘密完成签到 ,获得积分10
4秒前
cookie完成签到,获得积分10
5秒前
hentsi完成签到,获得积分10
5秒前
6秒前
6秒前
科研通AI2S应助ColdPomelo采纳,获得10
7秒前
疚祠发布了新的文献求助10
8秒前
Laputa完成签到,获得积分10
9秒前
10秒前
11秒前
hjhhjh完成签到,获得积分10
11秒前
12秒前
12秒前
O泡果奶发布了新的文献求助20
12秒前
星月夜完成签到,获得积分10
12秒前
可爱的函函应助包子采纳,获得10
13秒前
13秒前
共渡完成签到,获得积分10
14秒前
研友_QQC完成签到,获得积分10
14秒前
勉乎哉完成签到,获得积分10
14秒前
苗苗043完成签到,获得积分10
14秒前
忆枫完成签到,获得积分10
14秒前
marktitov发布了新的文献求助10
15秒前
07734完成签到,获得积分10
15秒前
飘逸踏歌完成签到,获得积分0
15秒前
料峭声花完成签到,获得积分10
15秒前
九月完成签到,获得积分10
15秒前
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Selenium in ruminant nutrition and health 200
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837710
求助须知:如何正确求助?哪些是违规求助? 3379786
关于积分的说明 10510752
捐赠科研通 3099411
什么是DOI,文献DOI怎么找? 1707090
邀请新用户注册赠送积分活动 821427
科研通“疑难数据库(出版商)”最低求助积分说明 772617