An integrated approach for studying exposure, metabolism, and disposition of traditional Chinese medicine using PATBS and MDRB tools: a case study of semen Armeniacae Amarum

代谢组学 鉴定(生物学) 计算生物学 计算机科学 体内 中医药 生物信息学 生物 医学 生物技术 病理 替代医学 植物
作者
Dandan Zhang,Junyu Zhang,Simian Chen,Hairong Zhang,Yang Yuexin,Shan Jiang,Yun Hong,Mingshe Zhu,Qiang Xie,Caisheng Wu
出处
期刊:Chinese Medicine [BioMed Central]
卷期号:19 (1)
标识
DOI:10.1186/s13020-024-01031-8
摘要

Abstract Background Deciphering the in vivo processes of traditional Chinese medicine (TCM) is crucial for identifying new pharmacodynamic substances and new drugs. Due to the complexity and diversity of components, investigating the exposure, metabolism, and disposition remains a major challenge in TCM research. In recent years, a number of non-targeted smart mass-spectrometry (MS) techniques, such as precise-and-thorough background-subtraction (PATBS) and metabolomics, have realized the intelligent identification of in vivo components of TCM. However, the metabolites characterization still largely relies on manual identification in combination with online databases. Results We developed a scoring approach based on the structural similarity and minimal mass defect variations between metabolites and prototypes. The current method integrates three dimensions of mass spectral data including m/z , mass defect of MS1 and MS2, and the similarity of MS2 fragments, which was sequentially analyzed by a R-based mass dataset relevance bridging (MDRB) data post-processing technique. The MDRB technology constructed a component relationship network for TCM, significantly improving metabolite identification efficiency and facilitating the mapping of translational metabolic pathways. By combining MDRB with PATBS through this non-targeted identification technology, we developed a comprehensive strategy for identification, characterization and bridging analysis of TCM metabolite in vivo. As a proof of concept, we adopted the proposed strategy to investigate the process of exposure, metabolism, and disposition of Semen Armeniacae Amarum (CKXR) in mice. Significance The currently proposed analytical approach is universally applicable and demonstrates its effectiveness in analyzing complex components of TCMs in vitro and in vivo. Furthermore, it enables the correlation of in vitro and in vivo data, providing insights into the metabolic transformations among components sharing the same parent nucleus structure. Finally, the developed MDRB platform is publicly available for ( https://github.com/933ZhangDD/MDRB ) for accelerating TCM research for the scientific community. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周肥发布了新的文献求助10
1秒前
科研通AI2S应助balko采纳,获得10
3秒前
范海辛完成签到 ,获得积分10
5秒前
风趣夜云发布了新的文献求助10
5秒前
6秒前
Ava应助企鹅采纳,获得10
6秒前
幸福的秋烟完成签到,获得积分10
7秒前
周肥完成签到,获得积分20
8秒前
9秒前
FashionBoy应助贤惠的泽洋采纳,获得10
10秒前
小小怪完成签到,获得积分20
10秒前
自觉雅柏发布了新的文献求助10
11秒前
内向的幼珊完成签到,获得积分10
11秒前
风趣夜云完成签到,获得积分10
12秒前
无花果应助VV采纳,获得10
12秒前
科研小小白完成签到,获得积分20
12秒前
小蘑菇应助Aurora采纳,获得10
13秒前
nixx完成签到,获得积分20
13秒前
开朗的抽屉完成签到 ,获得积分10
15秒前
17秒前
22秒前
24秒前
lmplzzp完成签到,获得积分20
25秒前
自觉雅柏完成签到,获得积分10
26秒前
zhangyuze发布了新的文献求助10
27秒前
星辰大海应助dd采纳,获得30
27秒前
27秒前
企鹅发布了新的文献求助10
28秒前
28秒前
科研通AI5应助清水采纳,获得10
28秒前
xiaoyuan发布了新的文献求助30
30秒前
33秒前
hhj发布了新的文献求助10
33秒前
syy发布了新的文献求助10
34秒前
深情安青应助赢赢采纳,获得10
34秒前
34秒前
35秒前
隐形曼青应助奋斗的青枫采纳,获得10
35秒前
一天一个苹果儿完成签到 ,获得积分10
36秒前
核桃酥发布了新的文献求助10
36秒前
高分求助中
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840402
求助须知:如何正确求助?哪些是违规求助? 3382552
关于积分的说明 10524757
捐赠科研通 3102083
什么是DOI,文献DOI怎么找? 1708639
邀请新用户注册赠送积分活动 822610
科研通“疑难数据库(出版商)”最低求助积分说明 773428