Truncated Arctangent Rank Minimization and Double-Strategy Neighborhood Constraint Graph Inference for Drug–Disease Association Prediction

推论 图形 缩小 约束(计算机辅助设计) 药品 计算机科学 秩(图论) 反三角函数 联想(心理学) 数学 算法 人工智能 数学优化 组合数学 医学 药理学 心理学 数学分析 几何学 心理治疗师
作者
Tiyao Liu,Shudong Wang,Shanchen Pang,Xiaodong Tan
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02276
摘要

Accurately identifying new therapeutic uses for drugs is essential to advancing pharmaceutical research and development. Graph inference techniques have shown great promise in predicting drug–disease associations, offering both high convergence accuracy and efficiency. However, most existing methods fail to sufficiently address the issue of numerous missing information in drug–disease association networks. Moreover, existing methods are often constrained by local or single-directional reasoning. To overcome these limitations, we propose a novel approach, truncated arctangent rank minimization and double-strategy neighborhood constraint graph inference (TARMDNGI), for drug–disease association prediction. First, we calculate Gaussian kernel and Laplace kernel similarities for both drugs and diseases, which are then integrated using nonlinear fusion techniques. We introduce a new matrix completion technique, referred to as TARM. TARM takes the adjacency matrix of drug–disease heterogeneous networks as the target matrix and enhances the robustness and formability of the edges of DDA networks by truncated arctangent rank minimization. Additionally, we propose a double-strategy neighborhood constrained graph inference method to predict drug–disease associations. This technique focuses on the neighboring nodes of drugs and diseases, filtering out potential noise from more distant nodes. Furthermore, the DNGI method employs both top-down and bottom-up strategies to infer associations using the entire drug–disease heterogeneous network. The synergy of the dual strategies can enhance the comprehensive processing of complex structures and cross-domain associations in heterogeneous graphs, ensuring that the rich information in the network is fully utilized. Experimental results consistently demonstrate that TARMDNGI outperforms state-of-the-art models across two drug–disease datasets, one lncRNA-disease dataset, and one microbe-disease dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精英刺客完成签到 ,获得积分10
刚刚
面包小狗发布了新的文献求助10
1秒前
WittingGU完成签到,获得积分0
1秒前
刘春亚完成签到,获得积分10
1秒前
繁荣的夏岚完成签到 ,获得积分10
2秒前
tf完成签到,获得积分10
3秒前
上的工人进场完成签到,获得积分10
4秒前
4秒前
肉胖胖肉完成签到,获得积分10
4秒前
优美从菡发布了新的文献求助10
5秒前
不期而遇完成签到 ,获得积分10
5秒前
科研小白完成签到,获得积分10
7秒前
10秒前
11秒前
长生的落叶完成签到,获得积分10
12秒前
long发布了新的文献求助10
12秒前
xyliu发布了新的文献求助10
13秒前
tingtingzhang完成签到 ,获得积分10
13秒前
wanci应助tf采纳,获得10
13秒前
风和日丽完成签到,获得积分10
14秒前
16秒前
16秒前
小马甲应助柳尖尖采纳,获得10
16秒前
丹dan完成签到,获得积分10
19秒前
科研通AI5应助刘春亚采纳,获得10
20秒前
Deerlu完成签到,获得积分10
20秒前
mlzmlz完成签到,获得积分0
20秒前
越幸运完成签到 ,获得积分10
20秒前
小马甲应助xyliu采纳,获得10
20秒前
lllllnnnnj发布了新的文献求助10
21秒前
Orange应助xz采纳,获得10
22秒前
共享精神应助21采纳,获得10
23秒前
zheng2001完成签到,获得积分10
23秒前
23秒前
彩色黑米完成签到 ,获得积分10
23秒前
优美从菡完成签到,获得积分10
23秒前
荆轲刺秦王完成签到 ,获得积分10
24秒前
顺心曼香完成签到,获得积分10
24秒前
25秒前
zheng2001发布了新的文献求助10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781110
求助须知:如何正确求助?哪些是违规求助? 3326526
关于积分的说明 10227602
捐赠科研通 3041675
什么是DOI,文献DOI怎么找? 1669552
邀请新用户注册赠送积分活动 799100
科研通“疑难数据库(出版商)”最低求助积分说明 758734