亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Long-term care plan recommendation for older adults with disabilities: a bipartite graph transformer and self-supervised approach

计算机科学 二部图 图形 人工智能 机器学习 医学 理论计算机科学
作者
Changhong Miao,Jingjing Luo,Yan Liang,Hong Liang,Yuhui Cen,Shijie Guo,Hongliu Yu
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
被引量:2
标识
DOI:10.1093/jamia/ocae327
摘要

Abstract Background With the global population aging and advancements in the medical system, long-term care in healthcare institutions and home settings has become essential for older adults with disabilities. However, the diverse and scattered care requirements of these individuals make developing effective long-term care plans heavily reliant on professional nursing staff, and even experienced caregivers may make mistakes or face confusion during the care plan development process. Consequently, there is a rigid demand for intelligent systems that can recommend comprehensive long-term care plans for older adults with disabilities who have stable clinical conditions. Objective This study aims to utilize deep learning methods to recommend comprehensive care plans for the older adults with disabilities. Methods We model the care data of older adults with disabilities using a bipartite graph. Additionally, we employ a prediction-based graph self-supervised learning (SSL) method to mine deep representations of graph nodes. Furthermore, we propose a novel graph Transformer architecture that incorporates eigenvector centrality to augment node features and uses graph structural information as references for the self-attention mechanism. Ultimately, we present the Bipartite Graph Transformer (BiT) model to provide personalized long-term care plan recommendation. Results We constructed a bipartite graph comprising of 1917 nodes and 195 240 edges derived from real-world care data. The proposed model demonstrates outstanding performance, achieving an overall F1 score of 0.905 for care plan recommendations. Each care service item reached an average F1 score of 0.897, indicating that the BiT model is capable of accurately selecting services and effectively balancing the trade-off between incorrect and missed selections. Discussion The BiT model proposed in this paper demonstrates strong potential for improving long-term care plan recommendations by leveraging bipartite graph modeling and graph SSL. This approach addresses the challenges of manual care planning, such as inefficiency, bias, and errors, by offering personalized and data-driven recommendations. While the model excels in common care items, its performance on rare or complex services could be enhanced with further refinement. These findings highlight the model's ability to provide scalable, AI-driven solutions to optimize care planning, though future research should explore its applicability across diverse healthcare settings and service types. Conclusions Compared to previous research, the novel model proposed in this article effectively learns latent topology in bipartite graphs and achieves superior recommendation performance. Our study demonstrates the applicability of SSL and graph transformers in recommending long-term care plans for older adults with disabilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wodetaiyangLLL完成签到 ,获得积分10
30秒前
hwen1998完成签到 ,获得积分10
33秒前
44秒前
44秒前
52秒前
魏欣娜发布了新的文献求助10
57秒前
1分钟前
1分钟前
充电宝应助魏欣娜采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
海洋球完成签到,获得积分10
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
humaning完成签到,获得积分10
1分钟前
好运常在完成签到 ,获得积分10
2分钟前
2分钟前
酷波er应助Angora采纳,获得10
2分钟前
2分钟前
2分钟前
Huzhu发布了新的文献求助50
2分钟前
2分钟前
Angora发布了新的文献求助10
2分钟前
魏欣娜发布了新的文献求助10
2分钟前
可爱的函函应助魏欣娜采纳,获得10
2分钟前
缥缈的觅风完成签到 ,获得积分10
2分钟前
幽默振家完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
香蕉觅云应助木木采纳,获得10
2分钟前
2分钟前
2分钟前
Lyx122524发布了新的文献求助10
3分钟前
3分钟前
科研通AI6应助WWJ采纳,获得10
3分钟前
3分钟前
Lyx122524完成签到,获得积分10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482338
求助须知:如何正确求助?哪些是违规求助? 4583202
关于积分的说明 14388943
捐赠科研通 4512236
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432478