结晶
材料科学
化学工程
钙钛矿(结构)
相(物质)
复合材料
化学
有机化学
工程类
作者
Yuan Liu,Xingyuan Zhou,Yupei Wu,Hongwei Zhang,Kun Cao
摘要
Formamidinium lead triiodide (FAPbI3) has received significant attention in the field of perovskite solar cells (PSCs) owing to its excellent optoelectronic properties and high thermal stability. However, the photoactive α-FAPbI3 perovskites are highly susceptible to degradation into non-perovskite δ-FAPbI3 phases, especially under humid conditions, which severely diminishes the device performance of FAPbI3 PSCs. Here, we propose an interfacial seeding strategy for regulating crystallization and stabilizing α-FAPbI3 perovskites in humid air. By post-treating an antisolvent-free, air-processed perovskite wet film with inorganic cesium lead triiodide (CsPbI3) nanocrystals, a functional seed layer is formed that effectively mitigates the erosion by humid air while facilitating the conversion of intermediates to the α-FAPbI3 phase. The interfacial seed-modified FAPbI3 perovskite films exhibit improved crystal quality and denser morphology. As a result, the efficiency of all-air-processed carbon-based PSCs is improved from 15.90% for the control to 18.04%. In addition, the unencapsulated PSCs based on interfacial seed-modified FAPbI3 films show improved environmental stability compared to their control counterparts, maintaining 80% of their initial efficiency after 60 days.
科研通智能强力驱动
Strongly Powered by AbleSci AI