Performance of ChatGPT-4o in the diagnostic workup of fever among returning travelers requiring hospitalization: a validation study

医学 医学诊断 金标准(测试) 病历 疟疾 急诊医学 急诊科 鉴别诊断 诊断代码 诊断准确性 儿科 重症监护医学 外科 内科学 放射科 人口 病理 精神科 环境卫生
作者
Dana Yelin,Neta Shirin,Ian A. Harris,Yovel Peretz,Dafna Yahav,Eli Schwartz,Eyal Leshem,Ili Margalit
出处
期刊:Journal of Travel Medicine [Oxford University Press]
标识
DOI:10.1093/jtm/taaf005
摘要

Febrile illness in returned travelers presents a diagnostic challenge in non-endemic settings. Chat generative pretrained transformer (ChatGPT) has the potential to assist in medical tasks, yet its diagnostic performance in clinical settings has rarely been evaluated. We conducted a preliminary validation assessment of ChatGPT-4o's performance in the workup of fever in returning travelers. We retrieved the medical records of returning travelers hospitalized with fever during 2009-2024. The clinical scenarios of these cases at time of presentation to the emergency department were prompted to ChatGPT-4o, using a detailed uniform format. The model was further prompted with four consistent questions concerning the differential diagnosis and recommended workup. To avoid training, we kept the model blinded to the final diagnosis. Our primary outcome was ChatGPT-4o's success rates in predicting the final diagnosis (gold standard) when requested to specify the top 3 differential diagnoses. Secondary outcomes were success rates when prompted to specify the single most likely diagnosis, and all necessary diagnostics. We also assessed ChatGPT-4o as a predicting tool for malaria and qualitatively evaluated its failures. ChatGPT-4o predicted the final diagnosis in 68% (95% CI 59-77%), 78% (95% CI 69-85%), and 83% (95% CI 74-89%) of the 114 cases, when prompted to specify the most likely diagnosis, top three diagnoses, and all possible diagnoses, respectively. ChatGPT-4o showed a sensitivity of 100% (95% CI 93-100%) and a specificity of 94% (95% CI 85-98%) for predicting malaria. The model failed to provide the final diagnosis in 18% (20/114) of cases, primarily by failing to predict globally endemic infections (16/21, 76%). ChatGPT-4o demonstrated high diagnostic accuracy when prompted with real-life scenarios of febrile returning travelers presenting to the emergency department, especially for malaria. Model training is expected to yield an improved performance and facilitate diagnostic decision-making in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助ycy采纳,获得10
1秒前
lemon完成签到,获得积分10
1秒前
Lion完成签到,获得积分10
1秒前
优秀完成签到 ,获得积分10
1秒前
123.完成签到 ,获得积分10
2秒前
2秒前
俊逸吐司发布了新的文献求助10
2秒前
嘟嘟完成签到,获得积分10
3秒前
海德堡完成签到,获得积分10
3秒前
4秒前
刘志萍完成签到 ,获得积分10
4秒前
火星上的觅夏完成签到,获得积分10
4秒前
Sunny完成签到,获得积分10
4秒前
Zikc完成签到,获得积分10
5秒前
Muhi完成签到,获得积分10
5秒前
卡牌大师完成签到,获得积分10
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
yaowenjun完成签到,获得积分10
5秒前
吴晨曦应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
6秒前
shaofeng完成签到,获得积分10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
星星完成签到,获得积分10
6秒前
彭于晏应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
laity完成签到,获得积分10
6秒前
墨痕mohen完成签到,获得积分0
6秒前
Sampson完成签到,获得积分10
6秒前
6秒前
剧院的饭桶完成签到,获得积分10
6秒前
正己化人完成签到,获得积分0
8秒前
文献狂人完成签到,获得积分10
8秒前
8秒前
APS完成签到,获得积分10
9秒前
kunkunna发布了新的文献求助10
9秒前
blink完成签到,获得积分10
9秒前
Ran完成签到 ,获得积分10
10秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450528
求助须知:如何正确求助?哪些是违规求助? 4558310
关于积分的说明 14266082
捐赠科研通 4481814
什么是DOI,文献DOI怎么找? 2454989
邀请新用户注册赠送积分活动 1445753
关于科研通互助平台的介绍 1421919