亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A review of artificial intelligence techniques for optimizing friction stir welding processes and predicting mechanical properties

搅拌摩擦焊 焊接 材料科学 机械工程 冶金 人工智能 制造工程 工程类 计算机科学
作者
Roosvel Soto-Díaz,Mauricio Vásquez‐Carbonell,José Escorcia‐Gutierrez
出处
期刊:Engineering Science and Technology, an International Journal [Elsevier]
卷期号:62: 101949-101949 被引量:10
标识
DOI:10.1016/j.jestch.2025.101949
摘要

The implementation of artificial intelligence (AI) has been instrumental in the optimization of friction stir welding (FSW) parameters. Artificial intelligence (AI) techniques, including artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS), were utilized to predict mechanical properties such as ultimate tensile strength (UTS) and optimize pivotal welding parameters, such as rotational speed, feed rate, axial force, and tilt angle. These methodologies enabled precise real-time control, thus improving the quality and consistency of the resulting welded joints. The objective of this study was to conduct a comprehensive review of the application of artificial intelligence (AI) techniques in friction stir welding (FSW). The objective of the study was to synthesize existing research using AI to predict mechanical properties and optimize welding parameters. Furthermore, the study aimed to illustrate how artificial intelligence has improved the caliber and dependability of FSW joints through real-time observation and defect identification. A systematic literature review was conducted according to the PRISMA guidelines to identify relevant studies on the utilization of AI in FSW. A search algorithm was applied to databases such as ScienceDirect and Web of Science, resulting in the identification of 27 relevant scientific papers. The selection criteria were designed to identify studies that employed AI techniques for the prediction and optimization of FSW parameters. The principal findings indicated the pervasive deployment of 34 distinct AI techniques, with ANN being the most prevalent. Hybrid models combining AI with optimization algorithms, such as particle swarm optimization (PSO) and genetic algorithms, were particularly effective. These models demonstrated high precision in predicting tensile strength and detecting internal defects, significantly improving joint quality. In conclusion, AI applications in FSW have proven essential for optimizing welding processes, with hybrid AI models showing superior performance. The continued integration of AI in FSW is expected to enhance the efficiency and reliability of welding operations, offering significant industrial advantages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
19秒前
薛雨佳发布了新的文献求助10
25秒前
贰玖发布了新的文献求助10
29秒前
38秒前
一个爱打乒乓球的彪完成签到 ,获得积分10
39秒前
贰玖完成签到,获得积分10
41秒前
辰溪发布了新的文献求助10
41秒前
41秒前
嘻嘻哈哈应助科研通管家采纳,获得10
49秒前
充电宝应助科研通管家采纳,获得30
49秒前
浮游应助科研通管家采纳,获得10
49秒前
嘻嘻哈哈应助科研通管家采纳,获得10
49秒前
Ava应助辰溪采纳,获得10
51秒前
57秒前
1分钟前
ZYP完成签到,获得积分10
1分钟前
1分钟前
乐乐应助迅速的岩采纳,获得10
1分钟前
lcxw1224发布了新的文献求助10
1分钟前
迅速的岩完成签到,获得积分10
1分钟前
1分钟前
1分钟前
迅速的岩发布了新的文献求助10
1分钟前
万人如海一身藏完成签到,获得积分20
1分钟前
1分钟前
souther完成签到,获得积分0
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
2分钟前
阿瓜师傅发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482348
求助须知:如何正确求助?哪些是违规求助? 4583202
关于积分的说明 14388962
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432501