Prediction of Equipment Remaining Useful Life Based on Graph Learning and Spatiotemporal Knowledge Graph

计算机科学 图形 联营 数据挖掘 知识图 人工智能 机器学习 先验概率 理论计算机科学 贝叶斯概率
作者
Changhao Men,Yu Han,Cheng‐Geng Huang
出处
期刊:Quality and Reliability Engineering International [Wiley]
卷期号:41 (4): 1209-1224
标识
DOI:10.1002/qre.3713
摘要

ABSTRACT As equipment structures and functionalities become more complex, ensuring safety and reliability has become increasingly critical. Hence, accurately predicting the remaining useful life (RUL) of equipment has gained significant importance. Recent advances in graph learning have contributed significantly to RUL prediction by leveraging monitoring signals to extract temporal features and build predictive models. However, a key challenge persists: structured prior knowledge that describes the spatiotemporal correlations between monitoring data and equipment structure is often lacking, and relational priors are not effectively incorporated in the modeling process. To address these challenges, this paper proposes a spatiotemporal knowledge graph (STKG) modeling method for equipment, combined with a graph‐based spatiotemporal feature learning algorithm for RUL prediction. The main contributions of this work are as follows: (1) The STKG models the hierarchical relationships among equipment, sensor signals, and state transitions across both spatial and temporal dimensions; (2) A graph attention convolution‐pooling network, incorporating relational priors, is proposed to extract spatial features from the STKG at different time points, constructing spatial graph aggregation mappings; (3) The informer network is employed to capture temporal decay patterns, generating cross‐time and sensor graph representations for RUL prediction. The proposed method is validated on a public dataset, demonstrating superior performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助CR7采纳,获得10
刚刚
1秒前
黑胡椒发布了新的文献求助10
2秒前
3秒前
ddddd关注了科研通微信公众号
4秒前
5秒前
qr发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
8秒前
思源应助热情孤丹采纳,获得10
8秒前
cc发布了新的文献求助10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
武状元发布了新的文献求助30
13秒前
白白白完成签到 ,获得积分10
13秒前
独特的鹅完成签到,获得积分10
13秒前
Julie关注了科研通微信公众号
14秒前
15秒前
16秒前
123123发布了新的文献求助10
18秒前
18秒前
歪猴完成签到,获得积分10
18秒前
18秒前
朱gui完成签到,获得积分10
18秒前
小恐龙在外太空睡觉完成签到 ,获得积分10
20秒前
量子星尘发布了新的文献求助10
22秒前
英俊的铭应助neverland采纳,获得10
24秒前
26秒前
Rosie完成签到,获得积分10
26秒前
27秒前
28秒前
yan完成签到,获得积分10
29秒前
锅锅发布了新的文献求助10
32秒前
量子星尘发布了新的文献求助10
32秒前
Rosie发布了新的文献求助10
32秒前
33秒前
34秒前
解愚志应助发条橙橘子采纳,获得20
35秒前
酷波er应助小昌采纳,获得10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5806256
求助须知:如何正确求助?哪些是违规求助? 5855337
关于积分的说明 15518368
捐赠科研通 4931375
什么是DOI,文献DOI怎么找? 2655125
邀请新用户注册赠送积分活动 1601831
关于科研通互助平台的介绍 1556859