Prediction of Equipment Remaining Useful Life Based on Graph Learning and Spatiotemporal Knowledge Graph

计算机科学 图形 联营 数据挖掘 知识图 人工智能 机器学习 先验概率 理论计算机科学 贝叶斯概率
作者
Changhao Men,Yu Han,Cheng‐Geng Huang
出处
期刊:Quality and Reliability Engineering International [Wiley]
标识
DOI:10.1002/qre.3713
摘要

ABSTRACT As equipment structures and functionalities become more complex, ensuring safety and reliability has become increasingly critical. Hence, accurately predicting the remaining useful life (RUL) of equipment has gained significant importance. Recent advances in graph learning have contributed significantly to RUL prediction by leveraging monitoring signals to extract temporal features and build predictive models. However, a key challenge persists: structured prior knowledge that describes the spatiotemporal correlations between monitoring data and equipment structure is often lacking, and relational priors are not effectively incorporated in the modeling process. To address these challenges, this paper proposes a spatiotemporal knowledge graph (STKG) modeling method for equipment, combined with a graph‐based spatiotemporal feature learning algorithm for RUL prediction. The main contributions of this work are as follows: (1) The STKG models the hierarchical relationships among equipment, sensor signals, and state transitions across both spatial and temporal dimensions; (2) A graph attention convolution‐pooling network, incorporating relational priors, is proposed to extract spatial features from the STKG at different time points, constructing spatial graph aggregation mappings; (3) The informer network is employed to capture temporal decay patterns, generating cross‐time and sensor graph representations for RUL prediction. The proposed method is validated on a public dataset, demonstrating superior performance compared to existing models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bc应助zzZ5采纳,获得30
1秒前
慕青应助小猪佩奇采纳,获得10
2秒前
不怕考试的赵无敌完成签到 ,获得积分10
2秒前
扒开皮皮发布了新的文献求助10
3秒前
归羽关注了科研通微信公众号
4秒前
文迪发布了新的文献求助10
5秒前
5秒前
唐唐完成签到 ,获得积分10
5秒前
zjx123完成签到,获得积分10
8秒前
acid_发布了新的文献求助10
10秒前
zhoull完成签到,获得积分10
11秒前
不倦应助与桉采纳,获得10
11秒前
11秒前
油菜籽完成签到 ,获得积分10
12秒前
敏感的寄凡完成签到,获得积分10
12秒前
bc应助melody采纳,获得10
13秒前
健壮的花瓣完成签到 ,获得积分10
14秒前
Catfish完成签到,获得积分10
14秒前
汉堡包应助小喵采纳,获得10
15秒前
小猪佩奇发布了新的文献求助10
15秒前
科研菜鸡完成签到,获得积分10
16秒前
自由的雁完成签到 ,获得积分10
16秒前
英姑应助acid_采纳,获得10
18秒前
18秒前
19秒前
小喵完成签到,获得积分20
19秒前
晨光中完成签到,获得积分10
22秒前
zhoull发布了新的文献求助10
23秒前
hkh完成签到,获得积分10
24秒前
25秒前
bc应助墨月白采纳,获得60
26秒前
毛毛完成签到,获得积分20
29秒前
时尚的飞机完成签到,获得积分10
30秒前
Iiirds完成签到 ,获得积分10
31秒前
36秒前
Xxxuan完成签到,获得积分10
39秒前
Iiiilr完成签到 ,获得积分10
41秒前
我爱科研完成签到 ,获得积分10
42秒前
哈哈哈完成签到,获得积分10
43秒前
墨月白完成签到,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777773
求助须知:如何正确求助?哪些是违规求助? 3323295
关于积分的说明 10213571
捐赠科研通 3038542
什么是DOI,文献DOI怎么找? 1667545
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275