Multiscale Sparse Cross-Attention Network for Remote Sensing Scene Classification

计算机科学 特征(语言学) 模式识别(心理学) 人工智能 突出 块(置换群论) 特征提取 稀疏逼近 保险丝(电气) 过程(计算) 数据挖掘 机器学习 数学 几何学 工程类 哲学 电气工程 操作系统 语言学
作者
Jingjing Ma,Wei Jiang,Xu Tang,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:63: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2025.3525582
摘要

Remote sensing (RS) scene classification (RSSC) is a prominent research topic in the RS community. Multilevel feature fusion is an important way of addressing RS scene classification, and many methods have been proposed in recent years. Although they succeed, current methods can still be improved, particularly in distinguishing the contributions of different multilevel features and fully and effectively fusing them. To address the above issues and fully exploit the potential of multilevel features for RS scene classification tasks, we propose a new model named multiscale sparse cross-attention network (MSCN). It not only focuses on the effectiveness of feature learning but also emphasizes the rationality of feature fusion. In detail, MSCN first extracts multilevel features using a pre-trained ResNet50. Also, these features are divided into high- and low-level features according to the clues they involved. Then, a multiscale sparse cross-attention (MSC) module is developed to cross-fuse the high-level feature with various low-level features, thereby effectively mining helpful information from multilevel features. In the fusion process, MSC not only explores the multiscale messages in RS scenes but also mitigates the negative impact of irrelevant information by employing sparse operations. Third, a group convolutional block attention module (CBAM) enhancer (GCE) is presented to enhance the representation of classification features. GCE detects local salient information within classification features using grouped CBAM and further enhances crucial details by readjusting the CBAM attention weights. This way, the classification features' discrimination can be improved. We conducted extensive experiments on three public RS scene classification datasets. The exceptional experimental results indicate that our proposed MSCN achieves superior classification accuracy, surpassing many existing methods. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Images-Classification/tree/main/MSCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的迎南完成签到 ,获得积分10
刚刚
孙远完成签到,获得积分10
刚刚
缥缈夏彤发布了新的文献求助10
2秒前
Cc发布了新的文献求助10
2秒前
丘比特应助姆姆采纳,获得10
2秒前
3秒前
Hoiden完成签到,获得积分10
4秒前
mtss完成签到,获得积分10
4秒前
虚幻靖易完成签到,获得积分10
5秒前
惠1完成签到,获得积分10
6秒前
7秒前
假装新疆人烤大串儿关注了科研通微信公众号
8秒前
Leolefroy完成签到,获得积分10
9秒前
10秒前
慕青应助ZY采纳,获得10
12秒前
shaonianliang发布了新的文献求助10
12秒前
13秒前
101完成签到 ,获得积分10
13秒前
Leolefroy发布了新的文献求助10
14秒前
16秒前
18秒前
姆姆完成签到,获得积分10
18秒前
hhh完成签到,获得积分10
19秒前
20秒前
初七发布了新的文献求助10
20秒前
21秒前
wol007完成签到 ,获得积分10
21秒前
乐观的秋柳关注了科研通微信公众号
21秒前
ZDTT发布了新的文献求助10
22秒前
23秒前
24秒前
panliu完成签到,获得积分10
25秒前
充电宝应助echo采纳,获得30
25秒前
脑洞疼应助科研通管家采纳,获得10
26秒前
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
领导范儿应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得10
26秒前
斯文败类应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306147
求助须知:如何正确求助?哪些是违规求助? 4452011
关于积分的说明 13853601
捐赠科研通 4339475
什么是DOI,文献DOI怎么找? 2382636
邀请新用户注册赠送积分活动 1377583
关于科研通互助平台的介绍 1345190