Multiscale Sparse Cross-Attention Network for Remote Sensing Scene Classification

计算机科学 特征(语言学) 模式识别(心理学) 人工智能 突出 块(置换群论) 特征提取 稀疏逼近 保险丝(电气) 过程(计算) 数据挖掘 机器学习 数学 哲学 语言学 几何学 电气工程 工程类 操作系统
作者
Jingjing Ma,Wei Jiang,Xu Tang,Xiangrong Zhang,Fang Liu,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tgrs.2025.3525582
摘要

Remote sensing (RS) scene classification (RSSC) is a prominent research topic in the RS community. Multilevel feature fusion is an important way of addressing RS scene classification, and many methods have been proposed in recent years. Although they succeed, current methods can still be improved, particularly in distinguishing the contributions of different multilevel features and fully and effectively fusing them. To address the above issues and fully exploit the potential of multilevel features for RS scene classification tasks, we propose a new model named multiscale sparse cross-attention network (MSCN). It not only focuses on the effectiveness of feature learning but also emphasizes the rationality of feature fusion. In detail, MSCN first extracts multilevel features using a pre-trained ResNet50. Also, these features are divided into high- and low-level features according to the clues they involved. Then, a multiscale sparse cross-attention (MSC) module is developed to cross-fuse the high-level feature with various low-level features, thereby effectively mining helpful information from multilevel features. In the fusion process, MSC not only explores the multiscale messages in RS scenes but also mitigates the negative impact of irrelevant information by employing sparse operations. Third, a group convolutional block attention module (CBAM) enhancer (GCE) is presented to enhance the representation of classification features. GCE detects local salient information within classification features using grouped CBAM and further enhances crucial details by readjusting the CBAM attention weights. This way, the classification features' discrimination can be improved. We conducted extensive experiments on three public RS scene classification datasets. The exceptional experimental results indicate that our proposed MSCN achieves superior classification accuracy, surpassing many existing methods. Our source codes are available at https://github.com/TangXu-Group/Remote-Sensing-Images-Classification/tree/main/MSCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助wawaa采纳,获得10
1秒前
dreamode应助卡卡咧咧采纳,获得10
3秒前
cdercder应助liuyi818采纳,获得10
4秒前
爱与感谢完成签到 ,获得积分10
5秒前
传奇3应助混个毕业采纳,获得10
6秒前
傲娇问晴完成签到,获得积分20
7秒前
上官若男应助戴戴采纳,获得10
8秒前
12秒前
丘比特应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
若有光发布了新的文献求助10
16秒前
haitun发布了新的文献求助10
19秒前
22秒前
之组长了完成签到 ,获得积分10
25秒前
岁月轮回完成签到,获得积分10
26秒前
贰鸟应助红烧肉吃吃采纳,获得20
26秒前
快乐的寄容完成签到 ,获得积分10
27秒前
haitun完成签到,获得积分10
31秒前
31秒前
木炭完成签到,获得积分10
34秒前
clonidine发布了新的文献求助10
38秒前
jbtjht完成签到,获得积分10
41秒前
卢西奥完成签到,获得积分10
42秒前
43秒前
45秒前
执着夏山完成签到,获得积分10
48秒前
qwert发布了新的文献求助10
49秒前
clonidine完成签到,获得积分10
49秒前
50秒前
粗犷的灵松完成签到 ,获得积分10
53秒前
深情安青应助qwert采纳,获得10
55秒前
dfghjkl发布了新的文献求助10
55秒前
酷波er应助阜睿采纳,获得10
55秒前
56秒前
yangkunmedical完成签到,获得积分10
59秒前
wawaa发布了新的文献求助10
1分钟前
雪白丸子完成签到,获得积分10
1分钟前
瞳梦完成签到,获得积分10
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778966
求助须知:如何正确求助?哪些是违规求助? 3324631
关于积分的说明 10218995
捐赠科研通 3039588
什么是DOI,文献DOI怎么找? 1668356
邀请新用户注册赠送积分活动 798646
科研通“疑难数据库(出版商)”最低求助积分说明 758440