Association between dietary inflammatory index and osteoporosis in the US population: evidence from NHANES 2003–2010

医学 全国健康与营养检查调查 骨质疏松症 逻辑回归 接收机工作特性 四分位数 人口 线性回归 内科学 列线图 统计 环境卫生 置信区间 数学
作者
Zhiwen Liu,H. Jian,Zijing Peng,Sicheng Xiong,Zhihai Zhang
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:12: 1508127-1508127 被引量:2
标识
DOI:10.3389/fnut.2025.1508127
摘要

Objective This study aimed to explore the association between the Dietary Inflammatory Index (DII) and the prevalence of osteoporosis in the U.S. population, using data from the National Health and Nutrition Examination Survey (NHANES) 2003–2010. Methods Data from 7,290 participants in the NHANES 2003–2010 survey were analyzed. The relationship between the DII and osteoporosis was evaluated using weighted multivariate logistic regression, and potential non-linear associations were explored through restricted cubic spline (RCS) regression. Subgroup analyses were conducted with stratified models, and the findings were depicted in a forest plot. To pinpoint key dietary factors associated with osteoporosis, we applied least absolute shrinkage and selection operator (LASSO) regression. These factors were integrated into a nomogram for risk prediction, with the model’s discriminative ability assessed via the receiver operating characteristic (ROC) curve. Results Osteoporosis patients had higher DII scores than those without the condition (1.61 vs. 1.18, p < 0.001). After adjusting for covariates, participants in the highest DII quartile had an 88% greater risk of osteoporosis (OR: 1.88, 95% CI: 1.41–2.52, P for trend <0.001). Restricted cubic spline analysis confirmed a linear relationship between DII and osteoporosis risk. Subgroup analyses showed similar patterns across different groups, as illustrated by the forest plot. LASSO regression identified key dietary factors, which were used to build a nomogram with an AUC of 83.6%, indicating strong predictive accuracy. Conclusion A higher DII is strongly linked to increased osteoporosis risk, underscoring the importance of reducing dietary inflammation to help prevent osteoporosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Majoe完成签到,获得积分10
刚刚
2秒前
顾矜应助一二采纳,获得10
2秒前
眼睛大的小熊猫完成签到,获得积分10
2秒前
七五完成签到,获得积分10
2秒前
小蘑菇应助满意的世界采纳,获得10
4秒前
4秒前
zhengmin317完成签到 ,获得积分10
5秒前
阔达秋双发布了新的文献求助10
6秒前
zhengts完成签到 ,获得积分10
9秒前
9秒前
优秀念柏完成签到,获得积分10
9秒前
袁衣发布了新的文献求助10
10秒前
juding完成签到,获得积分10
10秒前
12秒前
13秒前
Xide发布了新的文献求助10
14秒前
大模型应助大梦采纳,获得10
14秒前
生物科研小白完成签到 ,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
天川完成签到,获得积分10
16秒前
大模型应助宋禹狄采纳,获得10
16秒前
奋斗奋斗再奋斗完成签到,获得积分10
16秒前
魁梧的人达完成签到,获得积分10
17秒前
17秒前
EpQAQ发布了新的文献求助10
17秒前
19秒前
22秒前
yuko完成签到 ,获得积分10
22秒前
666完成签到,获得积分10
24秒前
biu应助痴情的博超采纳,获得50
24秒前
25秒前
Azurikasy完成签到,获得积分10
26秒前
26秒前
666发布了新的文献求助10
27秒前
29秒前
wwl发布了新的文献求助10
29秒前
太空工程师完成签到,获得积分10
30秒前
31秒前
yixia222发布了新的文献求助10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600865
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843611
捐赠科研通 4678481
什么是DOI,文献DOI怎么找? 2539007
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241