清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

AI model for automatic 3D reconstruction of ossicular chain and bony labyrinth from High-Resolution CT

高分辨率 分辨率(逻辑) 解剖 计算机断层摄影术 地质学 口腔正畸科 计算机科学 医学 人工智能 放射科 遥感
作者
Mingwei Xie,Haonan Wang,Zehong Yang,Ming Gao,Guangzi Shi,Xing-Yun Liao,Zhuojing Luo,Xiaomeng Li,Jun Shen
标识
DOI:10.1093/radadv/umaf004
摘要

Abstract Background Three-dimensional (3D) reconstruction of ossicular chain and bony labyrinth based on temporal bone high resolution computed tomography (HRCT) is useful for diagnosis and treatment guidance of middle and inner ear diseases. However, these structures are small and irregular, making manual reconstruction time-consuming. Purpose To develop and validate an artificial intelligence (AI) model based on semi-supervised learning for automated 3D reconstruction of ossicular chain and bony labyrinth on HRCT images. Methods HRCT images from 304 ears of consecutive 152 patients retrospectively collected from a single center were randomly divided into training (246 ears), validation (28 ears) and internal test (30 ears) cohorts for model development. A novel semi-supervised ear bone segmentation framework was used to train the AI model, and its performance was evaluated by Dice similarity coefficients. The trained algorithm was applied to a temporally independent test dataset of 30 ears of 15 patients from the same center for comparison with manual 3D reconstruction for processing time, target volume and visual assessment of segmentation. Results The AI model demonstrated a Dice score of 0.948 (95% CI: 0.940, 0.955) for the internal and 0.979 (95% CI: 0.973, 0.986) for the temporally independent test sets. In the latter dataset, the AI model required 2% or less processing time of manual 3D reconstruction for each ear (17.7 seconds ± 10.1 vs 1080.5 seconds ± 149.8; P < .001), and had an accuracy comparable to human experts in the volume and visual assessment of segmentation targets (P = .237-1.000). In a subgroup analysis, the model achieved accurate segmentation (Dice scores of 0.98-0.99) across various diseases (e.g. otitis media, mastoiditis, otosclerosis, middle and inner ear malformations, and Ménière’s disease). Conclusion The AI model enables robust, efficient and accurate 3D reconstruction for the small structures such as ossicular chain and bony labyrinth on HRCT images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一木发布了新的文献求助10
1秒前
萨尔莫斯发布了新的文献求助10
2秒前
一木完成签到,获得积分10
16秒前
科研通AI5应助yyy采纳,获得10
18秒前
23秒前
28秒前
柔弱友菱发布了新的文献求助10
28秒前
yyy发布了新的文献求助10
35秒前
萨尔莫斯发布了新的文献求助10
58秒前
合适靖儿完成签到 ,获得积分10
1分钟前
1分钟前
华仔应助JY采纳,获得10
1分钟前
1分钟前
柔弱友菱完成签到,获得积分10
1分钟前
JY发布了新的文献求助10
1分钟前
wangkongxinglang完成签到,获得积分10
1分钟前
舒适怀寒完成签到 ,获得积分10
1分钟前
drhwang完成签到,获得积分10
1分钟前
1分钟前
我是笨蛋完成签到 ,获得积分10
2分钟前
柔弱友菱发布了新的文献求助50
2分钟前
似水流年完成签到 ,获得积分10
3分钟前
bc应助柔弱友菱采纳,获得50
3分钟前
老石完成签到 ,获得积分10
3分钟前
哭泣灯泡完成签到,获得积分10
3分钟前
萨尔莫斯发布了新的文献求助10
3分钟前
善学以致用应助柔弱友菱采纳,获得200
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
orixero应助萨尔莫斯采纳,获得10
4分钟前
yshj完成签到 ,获得积分10
4分钟前
huangzsdy完成签到,获得积分10
4分钟前
健达奇趣蛋完成签到 ,获得积分10
4分钟前
隐形曼青应助123采纳,获得10
5分钟前
5分钟前
萨尔莫斯发布了新的文献求助10
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
科研路上互帮互助,共同进步完成签到 ,获得积分10
6分钟前
白天亮完成签到,获得积分10
6分钟前
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795590
求助须知:如何正确求助?哪些是违规求助? 3340645
关于积分的说明 10300859
捐赠科研通 3057157
什么是DOI,文献DOI怎么找? 1677522
邀请新用户注册赠送积分活动 805442
科研通“疑难数据库(出版商)”最低求助积分说明 762599