DSANIB: Drug-Target Interaction Predictions With Dual-View Synergistic Attention Network and Information Bottleneck Strategy

对偶(语法数字) 计算机科学 瓶颈 药品 医学 药理学 文学类 艺术 嵌入式系统
作者
Zhen Tian,Zhuangzhuang Zhang,Wanning Zhou,Zhixia Teng,Wei Song,Quan Zou
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:29 (2): 1484-1493 被引量:1
标识
DOI:10.1109/jbhi.2024.3497591
摘要

Prediction of drug-target interactions (DTIs) is one of the crucial steps for drug repositioning. Identifying DTIs through bio-experimental manners is always expensive and time-consuming. Recently, deep learning-based approaches have shown promising advancements in DTI prediction, but they face two notable challenges: (i) how to explicitly capture local interactions between drug-target pairs and learn their higher-order substructure embeddings; (ii) How to filter out redundant information to obtain effective embeddings for drugs and targets. Results: In this study, we propose a novel approach, termed DSANIB, to infer potential interactions between drugs and targets. DSANIB comprises two primary components: (1) DSAN component: The Inter-view Attention Network Module explicitly learns the local interactions between drugs and targets, while the Intra-view Attention Network Module aggregates information from local interaction features to obtain their higher-order substructure embeddings. (2) Information Bottleneck (IB) component: DSANIB adopts the IB strategy, which could retain relevant information while minimizing the redundant features to obtain their discriminative representations. Extensive experimental results demonstrate that DSANIB outperforms other SOTA prediction models. In addition, visualization of drug and target embeddings learned through DSANIB could provide interpretable insights for the prediction results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研牛马完成签到,获得积分10
1秒前
隐形之玉完成签到,获得积分10
1秒前
赘婿应助dududu采纳,获得10
1秒前
孙成成发布了新的文献求助10
2秒前
sxb10101给高大凌寒的求助进行了留言
2秒前
英俊的铭应助麦兜采纳,获得10
3秒前
3秒前
寒冷的蝴蝶关注了科研通微信公众号
3秒前
LUJU发布了新的文献求助30
3秒前
fadf35发布了新的文献求助10
3秒前
4秒前
打打应助LucyLi采纳,获得10
4秒前
李lll完成签到,获得积分10
4秒前
havvv完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
WWH完成签到,获得积分10
6秒前
乐乐应助mmingyu采纳,获得10
6秒前
qqq发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
caozhi完成签到,获得积分10
7秒前
LewisAcid应助科研牛人采纳,获得20
8秒前
8秒前
DJH完成签到,获得积分10
8秒前
美丽的朱少完成签到,获得积分20
9秒前
9秒前
9秒前
9秒前
10秒前
团团完成签到,获得积分20
10秒前
10秒前
Akim应助缓慢含烟采纳,获得10
11秒前
万能图书馆应助jiangsisi采纳,获得10
11秒前
11秒前
囡囡发布了新的文献求助30
11秒前
11秒前
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5592775
求助须知:如何正确求助?哪些是违规求助? 4678804
关于积分的说明 14806479
捐赠科研通 4642345
什么是DOI,文献DOI怎么找? 2534136
邀请新用户注册赠送积分活动 1502197
关于科研通互助平台的介绍 1469275