材料科学
拉曼光谱
电介质
带隙
活化能
半导体
温度系数
单斜晶系
奈奎斯特图
凝聚态物理
微晶
锶
陶瓷
分析化学(期刊)
矿物学
光电子学
化学
光学
介电谱
晶体结构
结晶学
复合材料
物理化学
电化学
物理
有机化学
冶金
色谱法
电极
标识
DOI:10.1002/crat.202300314
摘要
Abstract In this communication, the synthesis and characterizations of modified strontium manganate (SrCu 1/3 Mn 1/3 W 1/3 O 3 ) (SCMWO) by high‐temperature solid‐state method are reported. The structural analysis predicts a monoclinic structure with a crystallite size of 36.8 nm. The analysis of the Raman active modes reveals the presence of all the constituent atomic vibrations. The study of the ultraviolet–visible spectrum provides a bandgap energy of 1.71 eV, which may be suitable for photovoltaic applications. A Maxwell‐Wanger type of polarization effect is observed at low frequency while low dielectric loss makes the material suitable for energy storage devices. The study of the impedance plots reveals the negative temperature coefficient of resistance (NTCR) character. The activation energy increases with both frequency and temperature in the modified perovskite suggesting that conductivity of the sample increases and material characters are changing from dielectric to semiconducting. The symmetrical curves in the electrical modulus plots and shift toward higher frequency region agree with the results of the non‐Debye‐type of relaxation mechanism. The semicircular curves in the Cole–Cole plots confirm the semiconducting nature and are also well supported by the results of Nyquist plots. The studied material exhibits a semiconductor nature, which may be found suitable for energy storage device applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI