清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

PODB: A learning-based polarimetric object detection benchmark for road scenes in adverse weather conditions

计算机科学 人工智能 目标检测 旋光法 水准点(测量) 稳健性(进化) 机器学习 人工神经网络 计算机视觉 模式识别(心理学) 数据挖掘 物理 散射 光学 地理 生物化学 化学 大地测量学 基因
作者
Zhen Zhu,Xiaobo Li,Jingsheng Zhai,Haofeng Hu
出处
期刊:Information Fusion [Elsevier BV]
卷期号:108: 102385-102385 被引量:14
标识
DOI:10.1016/j.inffus.2024.102385
摘要

Due to its insensitivity to light intensity and the capability to capture multidimensional information, polarimetric imaging technology has been proven to have advantages over traditional intensity-based imaging techniques for object detection tasks in adverse environmental conditions, particularly in road traffic scenarios. Recently, with the rapid development of artificial intelligence technology, deep learning (DL)-powered object detection techniques can further enhance recognition accuracy and algorithm robustness. This improvement is made possible by the ability of DL technology to leverage large datasets and extract deeper levels of target-specific features. However, constructing large-scale polarimetric datasets poses challenges as obtaining polarimetric information requires multiple captures of intensity images. In other words, the workload is several times higher compared to traditional imaging techniques. To address the current scarcity of polarimetric datasets and evaluate the practical performance of various algorithms on polarimetric datasets, this paper proposes a Polarimetric Object Detection Benchmark (PODB) dataset. The PODB provides an integrated quality evaluation framework for DL-based object detection algorithms in complex road scenes by incorporating polarimetric imaging. Besides, we conducted extensive object detection experiments using the PODB, which allowed for a comprehensive validation and performance evaluation of effective benchmark algorithms. Furthermore, a physics-based multi-scale image fusion cascaded object detection neural network model is proposed. By combining the multidimensional information provided by polarized images with an adaptive learning multi-decision object detection neural network model, the recognition accuracy of complex road scenes in adverse weather conditions has been improved by approximately 10%. Additionally, we anticipate that PODB will serve as an effective platform for evaluating and comparing the performance of object detection algorithms, as well as providing researchers with a baseline for future studies in developing new DL-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆呆的猕猴桃完成签到 ,获得积分10
36秒前
zhentg完成签到,获得积分10
47秒前
杪夏二八完成签到 ,获得积分10
54秒前
1分钟前
研友_nxw2xL完成签到,获得积分10
1分钟前
muriel完成签到,获得积分10
1分钟前
foyefeng完成签到 ,获得积分0
1分钟前
汶南完成签到 ,获得积分10
1分钟前
自由的中蓝完成签到 ,获得积分10
2分钟前
陈同学完成签到 ,获得积分10
2分钟前
2分钟前
chen完成签到 ,获得积分10
2分钟前
沈惠映完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
iwsaml完成签到,获得积分10
3分钟前
iwsaml发布了新的文献求助10
3分钟前
jyy应助rpe采纳,获得20
4分钟前
hwen1998完成签到 ,获得积分10
4分钟前
smz完成签到 ,获得积分10
4分钟前
naczx完成签到,获得积分0
4分钟前
六等于三二一完成签到 ,获得积分10
5分钟前
5分钟前
今后应助多情的忆灵采纳,获得10
5分钟前
fangyifang完成签到,获得积分10
7分钟前
丹妮完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
忘忧Aquarius完成签到,获得积分10
8分钟前
8分钟前
bc应助cadcae采纳,获得30
8分钟前
bc应助cadcae采纳,获得30
8分钟前
8分钟前
蛇虫鼠蚁应助zhentg采纳,获得100
8分钟前
booboolovelulu完成签到,获得积分20
8分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815862
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402354
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743