Machine Learning–Based Prediction of Hospitalization During Chemoradiotherapy With Daily Step Counts

医学 接收机工作特性 逻辑回归 放化疗 随机森林 前瞻性队列研究 临床试验 机器学习 物理疗法 急诊医学 内科学 癌症 计算机科学
作者
Isabel D. Friesner,Jean Feng,Shalom Kalnicki,Madhur Garg,Nitin Ohri,Julian C. Hong
出处
期刊:JAMA Oncology [American Medical Association]
卷期号:10 (5): 642-642 被引量:6
标识
DOI:10.1001/jamaoncol.2024.0014
摘要

Importance Toxic effects of concurrent chemoradiotherapy (CRT) can cause treatment interruptions and hospitalizations, reducing treatment efficacy and increasing health care costs. Physical activity monitoring may enable early identification of patients at high risk for hospitalization who may benefit from proactive intervention. Objective To develop and validate machine learning (ML) approaches based on daily step counts collected by wearable devices on prospective trials to predict hospitalizations during CRT. Design, Setting, and Participants This study included patients with a variety of cancers enrolled from June 2015 to August 2018 on 3 prospective, single-institution trials of activity monitoring using wearable devices during CRT. Patients were followed up during and 1 month following CRT. Training and validation cohorts were generated temporally, stratifying for cancer diagnosis (70:30). Random forest, neural network, and elastic net–regularized logistic regression (EN) were trained to predict short-term hospitalization risk based on a combination of clinical characteristics and the preceding 2 weeks of activity data. To predict outcomes of activity data, models based only on activity-monitoring features and only on clinical features were trained and evaluated. Data analysis was completed from January 2022 to March 2023. Main Outcomes and Measures Model performance was evaluated in terms of the receiver operating characteristic area under curve (ROC AUC) in the stratified temporal validation cohort. Results Step counts from 214 patients (median [range] age, 61 [53-68] years; 113 [52.8%] male) were included. EN based on step counts and clinical features had high predictive ability (ROC AUC, 0.83; 95% CI, 0.66-0.92), outperforming random forest (ROC AUC, 0.76; 95% CI, 0.56-0.87; P = .02) and neural network (ROC AUC, 0.80; 95% CI, 0.71-0.88; P = .36). In an ablation study, the EN model based on only step counts demonstrated greater predictive ability than the EN model with step counts and clinical features (ROC AUC, 0.85; 95% CI, 0.70-0.93; P = .09). Both models outperformed the EN model trained on only clinical features (ROC AUC, 0.53; 95% CI, 0.31-0.66; P < .001). Conclusions and Relevance This study developed and validated a ML model based on activity-monitoring data collected during prospective clinical trials. Patient-generated health data have the potential to advance predictive ability of ML approaches. The resulting model from this study will be evaluated in an upcoming multi-institutional, cooperative group randomized trial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小天发布了新的文献求助10
刚刚
开朗娩发布了新的文献求助20
1秒前
斯文败类应助Oliver采纳,获得10
2秒前
LIJINGGE发布了新的文献求助10
4秒前
6秒前
916应助一屿采纳,获得20
8秒前
luminous发布了新的文献求助10
10秒前
10秒前
Oliver发布了新的文献求助10
13秒前
14秒前
17秒前
ss应助阳光的紫丝采纳,获得20
19秒前
19秒前
19秒前
LIJINGGE发布了新的文献求助10
20秒前
jane完成签到 ,获得积分10
21秒前
漫漫楚威风完成签到 ,获得积分10
24秒前
24秒前
25秒前
25秒前
sss2021发布了新的文献求助10
28秒前
gg发布了新的文献求助10
28秒前
ni完成签到,获得积分10
30秒前
31秒前
小鹿斑比完成签到 ,获得积分10
31秒前
FashionBoy应助迅速凡旋采纳,获得10
32秒前
luminous完成签到,获得积分10
36秒前
香蕉觅云应助秋言采纳,获得10
36秒前
zhaoty完成签到,获得积分10
38秒前
闪闪雅阳发布了新的文献求助10
38秒前
冰墩墩完成签到,获得积分10
41秒前
科研通AI2S应助洁净的钢笔采纳,获得10
42秒前
43秒前
jenningseastera应助Raymond采纳,获得10
43秒前
懒洋洋大王完成签到,获得积分10
43秒前
44秒前
44秒前
JamesPei应助端庄梦桃采纳,获得10
45秒前
zzuzll完成签到,获得积分10
45秒前
传奇3应助科研通管家采纳,获得10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401