Medical students’ AI literacy and attitudes towards AI: a cross-sectional two-center study using pre-validated assessment instruments

医学教育 利克特量表 健康素养 读写能力 心理学 样品(材料) 教育测量 一致性(知识库) 横断面研究 考试(生物学) 内部一致性 医学 心理测量学 医疗保健 计算机科学 人工智能 临床心理学 课程 教育学 化学 病理 古生物学 发展心理学 色谱法 经济 生物 经济增长
作者
Matthias Carl Laupichler,Alexandra Aster,Marcel Meyerheim,Tobias Raupach,Marvin Mergen
出处
期刊:BMC Medical Education [BioMed Central]
卷期号:24 (1) 被引量:12
标识
DOI:10.1186/s12909-024-05400-7
摘要

Abstract Background Artificial intelligence (AI) is becoming increasingly important in healthcare. It is therefore crucial that today’s medical students have certain basic AI skills that enable them to use AI applications successfully. These basic skills are often referred to as “AI literacy”. Previous research projects that aimed to investigate medical students’ AI literacy and attitudes towards AI have not used reliable and validated assessment instruments. Methods We used two validated self-assessment scales to measure AI literacy (31 Likert-type items) and attitudes towards AI (5 Likert-type items) at two German medical schools. The scales were distributed to the medical students through an online questionnaire. The final sample consisted of a total of 377 medical students. We conducted a confirmatory factor analysis and calculated the internal consistency of the scales to check whether the scales were sufficiently reliable to be used in our sample. In addition, we calculated t-tests to determine group differences and Pearson’s and Kendall’s correlation coefficients to examine associations between individual variables. Results The model fit and internal consistency of the scales were satisfactory. Within the concept of AI literacy, we found that medical students at both medical schools rated their technical understanding of AI significantly lower ( M MS1 = 2.85 and M MS2 = 2.50) than their ability to critically appraise ( M MS1 = 4.99 and M MS2 = 4.83) or practically use AI ( M MS1 = 4.52 and M MS2 = 4.32), which reveals a discrepancy of skills. In addition, female medical students rated their overall AI literacy significantly lower than male medical students, t (217.96) = -3.65, p <.001. Students in both samples seemed to be more accepting of AI than fearful of the technology, t (745.42) = 11.72, p <.001. Furthermore, we discovered a strong positive correlation between AI literacy and positive attitudes towards AI and a weak negative correlation between AI literacy and negative attitudes. Finally, we found that prior AI education and interest in AI is positively correlated with medical students’ AI literacy. Conclusions Courses to increase the AI literacy of medical students should focus more on technical aspects. There also appears to be a correlation between AI literacy and attitudes towards AI, which should be considered when planning AI courses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助橘如采纳,获得10
1秒前
斯文的道罡完成签到,获得积分10
4秒前
5秒前
hh完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
小虫学长应助科研通管家采纳,获得50
8秒前
8秒前
HHXYY完成签到 ,获得积分10
8秒前
8秒前
HUangg发布了新的文献求助10
11秒前
羊羊完成签到 ,获得积分10
11秒前
12秒前
冷静烤鸡发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
谦让的凝阳完成签到,获得积分10
16秒前
20秒前
丰富不惜发布了新的文献求助10
21秒前
刘吉瀚发布了新的文献求助10
21秒前
22秒前
fff完成签到,获得积分10
24秒前
科研通AI5应助冷静烤鸡采纳,获得10
27秒前
典雅问寒完成签到,获得积分0
28秒前
惑感完成签到 ,获得积分10
29秒前
在水一方应助刘吉瀚采纳,获得10
31秒前
feezy发布了新的文献求助20
32秒前
Jasper应助远志采纳,获得10
32秒前
panisa鹅完成签到,获得积分10
33秒前
35秒前
甜甜戎完成签到,获得积分20
36秒前
37秒前
郭凯辉完成签到,获得积分20
39秒前
安详尔岚完成签到 ,获得积分10
39秒前
feezy完成签到,获得积分10
41秒前
Da完成签到,获得积分10
41秒前
41秒前
Wang发布了新的文献求助10
41秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332081
捐赠科研通 3063446
什么是DOI,文献DOI怎么找? 1681691
邀请新用户注册赠送积分活动 807670
科研通“疑难数据库(出版商)”最低求助积分说明 763843