Functional Emotion Transformer for EEG-Assisted Cross-Modal Emotion Recognition

情绪识别 情态动词 脑电图 计算机科学 变压器 语音识别 心理学 电压 工程类 神经科学 电气工程 材料科学 高分子化学
作者
Wei-Bang Jiang,Ziyi Li,Wei‐Long Zheng,Bao-Liang Lu
标识
DOI:10.1109/icassp48485.2024.10446937
摘要

Multimodal emotion recognition based on electroencephalography (EEG) and eye movements has attracted increasing attention due to their high performance and complementary properties. However, there are two challenges that hinder its practical applications: the inconvenient EEG data collection and high-cost data annotation. In contrast, eye movements are convenient to obtain and process in real scenarios. To combine high performance of EEG and easy setups of eye tracking, we propose a novel EEG-assisted Contrastive Learning Framework with a Functional Emotion Transformer (ECO-FET) for cross-modal emotion recognition. ECO-FET leverages both the functional brain connectivity and the spectral-spatial-temporal domain of EEG signals simultaneously, which dramatically benefit the learning of eye movements. The whole process consists of three phases: pre-training, test, and fine-tuning. ECO-FET exploits the complementary information provided by multiple modalities during pre-training in order to improve the performance of unimodal models. In the pre-training phase, unlabeled EEG and eye movement data are fed into the model to contrastively learn the emotional latent representations between the two modalities, while in the test phase, eye movements and few labeled EEG samples are used to predict different emotions. Experimental results on three public datasets demonstrate that ECO-FET surpasses the state-of-the-art dramatically.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸢尾蓝完成签到,获得积分10
刚刚
刚刚
刚刚
pangkuan完成签到,获得积分20
1秒前
1秒前
1秒前
漂亮忆南发布了新的文献求助10
1秒前
1秒前
luohan完成签到,获得积分10
2秒前
2秒前
蓝桉发布了新的文献求助10
2秒前
4秒前
4秒前
明天十点睡完成签到,获得积分10
4秒前
真诚的鹰完成签到,获得积分20
5秒前
5秒前
5秒前
5秒前
gaohui8010发布了新的文献求助10
6秒前
wanci应助DQY采纳,获得10
6秒前
研友_Lw7MKL发布了新的文献求助10
6秒前
6秒前
pangkuan发布了新的文献求助10
6秒前
6秒前
jaslek发布了新的文献求助10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助stepha采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
xcgh应助科研通管家采纳,获得10
9秒前
ding应助嘿嘿嘿采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506145
求助须知:如何正确求助?哪些是违规求助? 4601666
关于积分的说明 14478195
捐赠科研通 4535688
什么是DOI,文献DOI怎么找? 2485572
邀请新用户注册赠送积分活动 1468465
关于科研通互助平台的介绍 1440943