已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting hypertension control using machine learning

医学 血压 人口 病历 健康档案 回顾性队列研究 机器学习 疾病 人工智能 内科学 医疗保健 计算机科学 环境卫生 经济 经济增长
作者
Thomas E. Mroz,Michael Griffin,Richard S. Cartabuke,Luke J. Laffin,Giavanna Russo‐Alvarez,George Thomas,Nicholas G. Smedira,Tim S. Meese,Michael Shost,Ghaith Habboub
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:19 (3): e0299932-e0299932
标识
DOI:10.1371/journal.pone.0299932
摘要

Hypertension is a widely prevalent disease and uncontrolled hypertension predisposes affected individuals to severe adverse effects. Though the importance of controlling hypertension is clear, the multitude of therapeutic regimens and patient factors that affect the success of blood pressure control makes it difficult to predict the likelihood to predict whether a patient's blood pressure will be controlled. This project endeavors to investigate whether machine learning can accurately predict the control of a patient's hypertension within 12 months of a clinical encounter. To build the machine learning model, a retrospective review of the electronic medical records of 350,008 patients 18 years of age and older between January 1, 2015 and June 1, 2022 was performed to form model training and testing cohorts. The data included in the model included medication combinations, patient laboratory values, vital sign measurements, comorbidities, healthcare encounters, and demographic information. The mean age of the patient population was 65.6 years with 161,283 (46.1%) men and 275,001 (78.6%) white. A sliding time window of data was used to both prohibit data leakage from training sets to test sets and to maximize model performance. This sliding window resulted in using the study data to create 287 predictive models each using 2 years of training data and one week of testing data for a total study duration of five and a half years. Model performance was combined across all models. The primary outcome, prediction of blood pressure control within 12 months demonstrated an area under the curve of 0.76 (95% confidence interval; 0.75-0.76), sensitivity of 61.52% (61.0-62.03%), specificity of 75.69% (75.25-76.13%), positive predictive value of 67.75% (67.51-67.99%), and negative predictive value of 70.49% (70.32-70.66%). An AUC of 0.756 is considered to be moderately good for machine learning models. While the accuracy of this model is promising, it is impossible to state with certainty the clinical relevancy of any clinical support ML model without deploying it in a clinical setting and studying its impact on health outcomes. By also incorporating uncertainty analysis for every prediction, the authors believe that this approach offers the best-known solution to predicting hypertension control and that machine learning may be able to improve the accuracy of hypertension control predictions using patient information already available in the electronic health record. This method can serve as a foundation with further research to strengthen the model accuracy and to help determine clinical relevance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
橘子发布了新的文献求助10
4秒前
XX完成签到 ,获得积分10
7秒前
9秒前
12秒前
13秒前
15秒前
FashionBoy应助fl采纳,获得10
16秒前
风枫叶完成签到,获得积分10
17秒前
清脆元冬发布了新的文献求助10
19秒前
m同学发布了新的文献求助10
21秒前
chen发布了新的文献求助10
22秒前
王大壮完成签到,获得积分10
28秒前
藜藜藜在乎你完成签到 ,获得积分10
29秒前
艺_完成签到 ,获得积分10
29秒前
英俊的铭应助闪闪的芷蕾采纳,获得10
32秒前
sean118完成签到 ,获得积分10
33秒前
chen完成签到,获得积分20
40秒前
liuwenjie应助m同学采纳,获得10
42秒前
43秒前
传奇3应助邹钰采纳,获得10
45秒前
薛定谔的加菲猫完成签到,获得积分10
45秒前
蒋12发布了新的文献求助10
47秒前
科研通AI5应助KKK研采纳,获得10
49秒前
50秒前
天空发布了新的文献求助20
54秒前
星辰大海应助Folium采纳,获得10
55秒前
55秒前
shjyang完成签到,获得积分10
55秒前
fl发布了新的文献求助10
56秒前
sarah完成签到,获得积分10
58秒前
Morning晨发布了新的文献求助10
58秒前
dreamboat完成签到,获得积分10
1分钟前
1分钟前
天空完成签到,获得积分10
1分钟前
1分钟前
伊力扎提发布了新的文献求助10
1分钟前
哈哈哈哈发布了新的文献求助10
1分钟前
1分钟前
搜集达人应助新陈采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Technologies supporting mass customization of apparel: A pilot project 300
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780696
求助须知:如何正确求助?哪些是违规求助? 3326187
关于积分的说明 10226179
捐赠科研通 3041293
什么是DOI,文献DOI怎么找? 1669330
邀请新用户注册赠送积分活动 799040
科研通“疑难数据库(出版商)”最低求助积分说明 758701